This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152417-Thumbnail Image.png
Description
Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based

Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based procedures include surgical and clinical procedures, some of which are protocol-driven. Cost and time required for individual team-based training sessions, along with other factors, contribute to making the training complex and challenging. A great deal of research has been done on medically-focused collaborative virtual reality (VR)-based training for protocol-driven procedures as a cost-effective as well as time-efficient solution. Most VR-based simulators focus on training of individual personnel. The ones which focus on providing team training provide an interactive simulation for only a few scenarios in a collaborative virtual environment (CVE). These simulators are suited for didactic training for cognitive skills development. The training sessions in the simulators require the physical presence of mentors. The problem with this kind of system is that the mentor must be present at the training location (either physically or virtually) to evaluate the performance of the team (or an individual). Another issue is that there is no efficient methodology that exists to provide feedback to the trainees during the training session itself (formative feedback). Furthermore, they lack the ability to provide training in acquisition or improvement of psychomotor skills for the tasks that require force or touch feedback such as cardiopulmonary resuscitation (CPR). To find a potential solution to overcome some of these concerns, a novel training system was designed and developed that utilizes the integration of sensors into a CVE for time-critical medical procedures. The system allows the participants to simultaneously access the CVE and receive training from geographically diverse locations. The system is also able to provide real-time feedback and is also able to store important data during each training/testing session. Finally, this study also presents a generalizable collaborative team-training system that can be used across various team-based procedures in medical as well as non-medical domains.
ContributorsKhanal, Prabal (Author) / Greenes, Robert (Thesis advisor) / Patel, Vimla (Thesis advisor) / Smith, Marshall (Committee member) / Gupta, Ashish (Committee member) / Kaufman, David (Committee member) / Arizona State University (Publisher)
Created2014
155801-Thumbnail Image.png
Description
Type 1 diabetes (T1D) is a chronic disease that affects 1.25 million people in the United States. There is no known cure and patients must self-manage the disease to avoid complications resulting from blood glucose (BG) excursions. Patients are more likely to adhere to treatments when they incorporate

Type 1 diabetes (T1D) is a chronic disease that affects 1.25 million people in the United States. There is no known cure and patients must self-manage the disease to avoid complications resulting from blood glucose (BG) excursions. Patients are more likely to adhere to treatments when they incorporate lifestyle preferences. Current technologies that assist patients fail to consider two factors that are known to affect BG: exercise and alcohol. The hypothesis is postprandial blood glucose levels of adult patients with T1D can be improved by providing insulin bolus or carbohydrate recommendations that account for meal and alcohol carbohydrates, glycemic excursion, and planned exercise. I propose an evidence-based decision support tool, iDECIDE, to make recommendations to improve glucose control by taking into account meal and alcohol carbohydrates, glycemic excursion and planned exercise. iDECIDE is deployed as a low-cost and easy to disseminate smartphone application.

A literature review was conducted on T1D and the state-of-the-art in diabetes technology. To better understand self-management behaviors and guide the development of iDECIDE, several data sources were collected and analyzed: surveys, insulin pump paired with glucose monitoring, and self-tracking of exercise and alcohol. The analysis showed variability in compensation techniques for exercise and alcohol and that patients made unaided decisions, suggesting a need for better decision support.

The iDECIDE algorithm can make insulin and carbohydrate recommendations. Since there were no existing in-silico methods for assessing bolus calculators, like iDECIDE, I proposed a novel methodology to retrospectively compare insulin pump bolus calculators. Application of the methodology shows that iDECIDE outperformed the Medtronic insulin pump bolus calculator and could have improved glucose control.

This work makes contributions to diabetes technology researchers, clinicians and patients. The iDECIDE app provides patients easy access to a decision support tool that can improve glucose control. The study of behaviors from diabetes technology and self-report patient data can inform clinicians and the design of future technologies and bedside tools that integrate patient’s behaviors and perceptions. The comparison methodology provides a means for clinical informatics researchers to identify and retrospectively test promising insulin blousing algorithms using real-life data.
ContributorsGroat, Danielle (Author) / Grando, Maria Adela (Thesis advisor) / Kaufman, David (Committee member) / Thompson, Bithika (Committee member) / Arizona State University (Publisher)
Created2017