This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171418-Thumbnail Image.png
Description
Biopolymers perform the majority of essential functions necessary for life. From a small amount of components emerges considerable complexity in both structure and function. The separated timescales of dynamic processes and intricate intra- and inter-molecular interactions of these molecules necessitate the development and utilization of computational approaches for biopolymer study

Biopolymers perform the majority of essential functions necessary for life. From a small amount of components emerges considerable complexity in both structure and function. The separated timescales of dynamic processes and intricate intra- and inter-molecular interactions of these molecules necessitate the development and utilization of computational approaches for biopolymer study and nanotechnology applications. Biopolymer nanotechnology exploits the natural chemistry of biopolymers to perform novel functions at the nanoscale. Molecular dynamics is the numerical simulation of chemical entities according to the physical laws of motion and statistical mechanics. The number of atoms in biopolymers require coarse-grained methods to fully sample the dynamics of the system with reasonable resources. Accordingly, a coarse-grained molecular dynamics model for the characterization of hybrid nucleic acid-protein nanotechnology was developed. Proteins are represented as an anisotropic network model (ANM) which show good agreement with experimentally derived protein dynamics for a small computational cost. The model was subsequently applied to hybrid DNA-protein cages systems and exhibited excellent agreement with experimental results. Ongoing development efforts look to apply network models to oxDNA origami to create multiscale models for DNA origami. The network approximation will allow for detailed simulation of DNA origami association, of concern to DNA crystal and lattice formation. Identification and design of target-specific binders (aptamers) has received considerable attention on account of their diagnostic and therapeutic potential. Generated in selection cycles from extensive random libraries, biopolymer aptamers are of particular interest due to their potential non-immunogenic properties. Machine learning leverages the use of powerful statistical principles to train a model to transform an input into a desired output. Parameters of the model are iteratively adjusted according to the gradient of the cost function. An unsupervised and generative machine learning model was applied to Thrombin aptamer sequence data. From the model, sequence characteristics necessary for binding were identified and new aptamers capable of binding Thrombin were sampled and verified experimentally. Future work on the development and utilization of an unsupervised and interpretable machine learning model for unaligned sequence data is also discussed.
ContributorsProcyk, Jonah (Author) / Sulc, Petr (Thesis advisor) / Stephanopoulos, Nicholas (Thesis advisor) / Hariadi, Rizal (Committee member) / Heyden, Matthias (Committee member) / Arizona State University (Publisher)
Created2022
158875-Thumbnail Image.png
Description
Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that

Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that initiated their production. If one could read it, this information can be used to predict B cell epitopes on target antigens in order to design effective epitope driven vaccines, therapies and serological assays. Immunosignature technology captures the specific information content of serum IgG from infected and uninfected individuals on high density microarrays containing ~105 nearly random peptide sequences. Although the sequences of the peptides are chosen to evenly cover amino acid sequence space, the pattern of serum IgG binding to the array contains a consistent signature associated with each specific disease (e.g., Valley fever, influenza) among many individuals. Here, the disease specific but agnostic behavior of the technology has been explored by profiling molecular recognition information for five pathogens causing life threatening infectious diseases (e.g. DENV, WNV, HCV, HBV, and T.cruzi). This was done by models developed using a machine learning algorithm to model the sequence dependence of the humoral immune responses as measured by the peptide arrays. It was shown that the disease specific binding information could be accurately related to the peptide sequences used on the array by the machine learning (ML) models. Importantly, it was demonstrated that the ML models could identify or predict known linear epitopes on antigens of the four viruses. Moreover, the models identified potential novel linear epitopes on antigens of the four viruses (each has 4-10 proteins in the proteome) and of T.cruzi (a eukaryotic parasite which has over 12,000 proteins in its proteome). Finally, the predicted epitopes were tested in serum IgG binding assays such as ELISAs. Unfortunately, the assay results were inconsistent due to problems with peptide/surface interactions. In a separate study for the development of antibody recruiting molecules (ARMs) to combat microbial infections, 10 peptides from the high density peptide arrays were tested in IgG binding assays using sera of healthy individuals to find a set of antibody binding termini (ABT, a ligand that binds to a variable region of the IgG). It was concluded that one peptide (peptide 7) may be used as a potential ABT. Overall, these findings demonstrate the applications of the immunosignature technology ranging from developing tools to predict linear epitopes on pathogens of small to large proteomes to the identification of an ABT for ARMs.
ContributorsCHOWDHURY, ROBAYET (Author) / Woodbury, Neal (Thesis advisor) / LaBaer, Joshua (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2020