This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

151494-Thumbnail Image.png
Description
ABSTRACT Manipulation of biological targets using synthetic or naturally occurring organic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that are targeted either to cell surface receptors, to the ribosomal catalytic center or to human immunodeficiency virus

ABSTRACT Manipulation of biological targets using synthetic or naturally occurring organic compounds has been the focal point of medicinal chemistry. The work described herein centers on the synthesis of organic small molecules that are targeted either to cell surface receptors, to the ribosomal catalytic center or to human immunodeficiency virus reverse transcriptase. Bleomycins (BLMs) are a family of naturally occurring glycopeptidic antitumor agents with an inherent selectivity towards cancer cells. DeglycoBLM, which lacks the sugar moiety of bleomycin, has much lower cytotoxicity in cellular assays. A recent study using microbbuble conjugates of BLM and deglycoBLM showed that BLM was able to selectively bind to breast cancer cells, whereas the deglyco analogue was unable to target either the cancer or normal cells. This prompted us to further investigate the role of the carbohydrate moiety in bleomycin. Fluorescent conjugates of BLM, deglycoBLM and the BLM carbohydrate were studied for their ability to target cancer cells. Work presented here describes the synthesis of the fluorescent carbohydrate conjugate. Cell culture assays showed that the sugar moiety was able to selectively target various cancer cells. A second conjugate was prepared to study the importance of the C-3 carbamoyl group present on the mannose residue of the carbohydrate. Three additional fluorescent probes were prepared to improve the uptake of this carbohydrate moiety into cancer cells. Encouraged by the results from the fluorescence experiments, the sugar moiety was conjugated to a cytotoxic molecule to selectively deliver this drug into cancer cells. The nonsense codon suppression technique has enabled researchers to site specifically incorporate noncanonical amino acids into proteins. The amino acids successfully incorporated this way are mostly α-L-amino acids. The non-α-L-amino acids are not utilized as substrates by ribosome catalytic center. Hoping that mutations near the ribosome peptidyltransferase site might alleviate its bias towards α-L-amino acids, a library of modified ribosomes was generated. Analogues of the naturally occurring antibiotic puromycin were used to select promising candidates that would allow incorporation of non-α-L-amino acids into proteins. Syntheses of three different puromycin analogues are described here. The reverse transcriptase enzyme from HIV-1 (HIV-1 RT) has been a popular target of HIV therapeutic agents due to its crucial role in viral replication. The 4-chlorophenyl hydrazone of mesoxalic acid (CPHM) was identified in a screen designed to find inhibitors of strand transfer reactions catalyzed by HIV-1 RT. Our collaborators designed several analogues of CPHM with different substituents on the aromatic ring using molecular docking simulations. Work presented here describes the synthesis of eight different analogues of CPHM.
ContributorsPaul, Rakesh (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana L (Committee member) / Rose, Seth D (Committee member) / Arizona State University (Publisher)
Created2013
149368-Thumbnail Image.png
Description
In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on

In oxygenic photosynthesis, Photosystem I (PSI) and Photosystem II (PSII) are two transmembrane protein complexes that catalyze the main step of energy conversion; the light induced charge separation that drives an electron transfer reaction across the thylakoid membrane. Current knowledge of the structure of PSI and PSII is based on three structures: PSI and PSII from the thermophilic cyanobacterium Thermosynechococcus elonagatus and the PSI/light harvesting complex I (PSI-LHCI) of the plant, Pisum sativum. To improve the knowledge of these important membrane protein complexes from a wider spectrum of photosynthetic organisms, photosynthetic apparatus of the thermo-acidophilic red alga, Galdieria sulphuraria and the green alga, Chlamydomonas reinhardtii were studied. Galdieria sulphuraria grows in extreme habitats such as hot sulfur springs with pH values from 0 to 4 and temperatures up to 56°C. In this study, both membrane protein complexes, PSI and PSII were isolated from this organism and characterized. Ultra-fast fluorescence spectroscopy and electron microscopy studies of PSI-LHCI supercomplexes illustrate how this organism has adapted to low light environmental conditions by tightly coupling PSI and LHC, which have not been observed in any organism so far. This result highlights the importance of structure-function relationships in different ecosystems. Galdieria sulphuraria PSII was used as a model protein to show the amenability of integral membrane proteins to top-down mass spectrometry. G.sulphuraria PSII has been characterized with unprecedented detail with identification of post translational modification of all the PSII subunits. This study is a technology advancement paving the way for the usage of top-down mass spectrometry for characterization of other large integral membrane proteins. The green alga, Chlamydomonas reinhardtii is widely used as a model for eukaryotic photosynthesis and results from this organism can be extrapolated to other eukaryotes, especially agricultural crops. Structural and functional studies on the PSI-LHCI complex of C.reinhardtii grown under high salt conditions were studied using ultra-fast fluorescence spectroscopy, circular dichroism and MALDI-TOF. Results revealed that pigment-pigment interactions in light harvesting complexes are disrupted and the acceptor side (ferredoxin docking side) is damaged under high salt conditions.
ContributorsThangaraj, Balakumar (Author) / Fromme, Petra (Thesis advisor) / Shock, Everett (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2010
190909-Thumbnail Image.png
Description
Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a

Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are crucial nutrients for autotrophic and heterotrophic microbial life, respectively, in hydrothermal systems. Biogeochemical processes that control amounts of DIC and DOC in Yellowstone hot springs can be investigated by measuring carbon abundances and respective isotopic values. A decade and a half of field work in 10 regions within Yellowstone National Park and subsequent geochemical lab analyses reveal that sulfate-dominant acidic regions have high DOC (Up to 57 ppm C) and lower DIC (up to 50 ppm C) compared to neutral-chloride regions with low DOC (< 2 ppm C) and higher DIC (up to 100 ppm C). Abundances and isotopic data suggest that sedimentary rock erosion by acidic hydrothermal fluids, fresh snow-derived meteoric water, and exogenous carbon input allowed by local topography may affect DOC levels. Evaluating the isotopic compositions of DIC and DOC in hydrothermal fluids gives insight on the geology and microbial life in the subsurface between different regions. DIC δ13C values range from -4‰ to +5‰ at pH 5-9 and from -10‰ to +3‰ at pH 2-5 with several springs lower than -10‰. DOC δ13C values parkwide range from -10‰ to -30‰. Within this range, neutral-chloride regions in the Lower Geyser Basin have lighter isotopes than sulfate-dominant acidic regions. In hot springs with elevated levels of DOC, the range only varies between -20‰ and -26‰ which may be caused by local exogenous organic matter runoff. Combining other geochemical measurements, such as differences in chloride and sulfate concentrations, demonstrates that some regions contain mixtures of multiple fluids moving through the complex hydrological system in the subsurface. The mixing of these fluids may account for increased levels of DOC in meteoric sulfate-dominant acidic regions. Ultimately, the foundational values of dissolved carbon and their isotopic composition is provided in a parkwide study, so results can be combined with future studies that apply different sequencing analyses to understand specific biogeochemical cycling and microbial communities that occur in individual hot springs.
ContributorsBarnes, Tanner (Author) / Shock, Everett (Thesis advisor) / Meyer-Dombard, D'Arcy (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2023
156470-Thumbnail Image.png
Description
Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are

Lipids perform functions essential to life and have a variety of structures that are influenced by the organisms and environments that produced them. Lipids tend to resist degradation after cell death, leading to their widespread use as biomarkers in geobiology, though their interpretation is often tricky. Many lipid structures are shared among organisms and function in many geochemical conditions and extremes. I argue it is useful to interpret lipid distributions as a balance of functional necessity and energy cost. This work utilizes a quantitative thermodynamic framework for interpreting energetically driven adaptation in lipids.

Yellowstone National Park is a prime location to study biological adaptations to a wide range of temperatures and geochemical conditions. Lipids were extracted and quantified from thermophilic microbial communities sampled along the temperature (29-91°C) and chemical gradients of four alkaline Yellowstone hot springs. I observed that decreased alkyl chain carbon content, increased degree of unsaturation, and a shift from ether to ester linkage caused a downstream increase in the average oxidation state of carbon (ZC) I hypothesized these adaptations were selected because they represent cost-effective solutions to providing thermostable membranes.

This hypothesis was explored by assessing the relative energetic favorability of autotrophic reactions to form alkyl chains from known concentrations of dissolved inorganic species at elevated temperatures. I found that the oxidation-reduction potential (Eh) predicted to favor formation of sample-representative alkyl chains had a strong positive correlation with Eh calculated from hot spring water chemistry (R2 = 0.72 for the O2/H2O redox couple). A separate thermodynamic analysis of bacteriohopanepolyol lipids found that predicted equilibrium abundances of observed polar headgroup distributions were also highly correlated with Eh of the surrounding water (R2= 0.84). These results represent the first quantitative thermodynamic assessment of microbial lipid adaptation in natural systems and suggest that observed lipid distributions represent energetically cost-effective assemblages along temperature and chemical gradients.
ContributorsBoyer, Grayson Maxwell (Author) / Shock, Everett (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
157698-Thumbnail Image.png
Description
Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied

Continuing and increasing reliance on fossil fuels to satisfy our population’s energy demands has encouraged the search for renewable carbon-free and carbon-neutral sources, such as hydrogen gas or CO2 reduction products. Inspired by nature, one of the objectives of this dissertation was to develop protein-based strategies that can be applied in the production of green fuels. The first project of this dissertation aimed at developing a controllable strategy to incorporate domains with different functions (e. g. catalytic sites, electron transfer modules, light absorbing subunits) into a single multicomponent system. This was accomplished through the rational design of 2,2’-bipyridine modified dimeric peptides that allowed their metal-directed oligomerization by forming tris(bipyridine) complexes, thus resulting in the formation of a hexameric assembly.

Additionally, two different approaches to incorporate non-natural organometallic catalysts into protein matrix are discussed. First, cobalt protoporphyrin IX was incorporated into cytochrome b562 to produce a water-soluble proton and CO2 reduction catalyst that is active upon irradiation in the presence of a photosensitizer. The effect of the porphyrin axial ligands provided by the protein environment has been investigated by introducing mutations into the native scaffold, indicating that catalytic activity of proton reduction is dependent on axial coordination to the porphyrin. It is also shown that effects of the protein environment are not directly transferred when applied to other reactions, such as CO2 reduction.

Inspired by the active site of [FeFe]-hydrogenases, the second approach is based on the stereoselective preparation of a novel amino acid bearing a 1,2-benzenedithiol side chain. This moiety can serve as an anchoring point for the introduction of metal complexes into protein matrices. By doing so, this strategy enables the study of protein interactions with non-natural cofactors and the effects that it may have on catalysis. The work developed herein lays a foundation for furthering the study of the use of proteins as suitable environments for tuning the activity of organometallic catalysts in aqueous conditions, and interfacing these systems with other supporting units into supramolecular assemblies.
ContributorsAlcala-Torano, Rafael de Jesus (Author) / Ghirlanda, Giovanna (Thesis advisor) / Moore, Ana L (Committee member) / Mills, Jeremy H (Committee member) / Arizona State University (Publisher)
Created2019