This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

150221-Thumbnail Image.png
Description
Mexican Americans have an increased risk for type 2 diabetes and premature cardiovascular disease (CVD). The association of hyperglycemia with traditional CVD risk factors in this population has been established, but there is limited data regarding other non-traditional CVD risk factors. Thus, this cross-sectional study was conducted to evaluate CVD

Mexican Americans have an increased risk for type 2 diabetes and premature cardiovascular disease (CVD). The association of hyperglycemia with traditional CVD risk factors in this population has been established, but there is limited data regarding other non-traditional CVD risk factors. Thus, this cross-sectional study was conducted to evaluate CVD risk among Mexican Americans by measuring concentrations of lipids, high-sensitivity C-reactive protein (hsCRP), and cholesterol in low-density-lipoprotein (LDL) and high-density-lipoprotein (HDL) subfractions. Eighty overweight/obese Mexican-American adults participating in the Maricopa Insulin Resistance Initiative were randomly selected from each of the following four groups (n = 20 per group): nomolipidemic
ormoglycemic controls (NC), dyslipidemic
ormoglycemic (DN), dyslipidemic/prediabetic (DPD) and dyslipidemic/diabetic (DD). Total cholesterol (TC) was 30% higher among DD than in NC participants (p<0.0001). The DPD group had 27% and 12% higher LDL-C concentrations than the NC and DN groups, respectively. Similarly, LDL-C was 29% and 13% higher in DD than in NC and DN participants (p=0.013). An increasing trend was observed in %10-year CVD risk with increasing degree of hyperglycemia (p<0.0001). The NC group had less cholesterol in sdLDL particles than dyslipidemic groups, regardless of glycemic status (p<0.0001). When hyperglycemia was part of the phenotype (DPD and DD), there was a greater proportion of total and HDL-C in sHDL particles in dyslipidemic individuals than in NC (p=0.023; p<0.0001; respectively). Percent 10-year CVD risk was positively correlated with triglyceride (TG) (r=0.384, p<0.0001), TC (r=0.340, p<0.05), cholesterol in sdLDL(r=0.247; p<0.05), and TC to HDL-C ratio (r=0.404, p<0.0001), and negatively correlated with HDL-C in intermediate and large HDL(r=-0.38, p=0.001; r=0.34, p=0.002, respectively). The TC/HDL-C was positively correlated with cholesterol in sdLDL particles (r=0.698, p<0.0001) and HDL-C in sHDL particles (r=0.602, p<0.0001), and negatively correlated with cholesterol in small (r=-0.35, p=0.002), intermediate (r=-0.91, p<0.0001) and large (r=-0.84, p<0.0001) HDL particles, and HDL-C in the large HDL particles (r=-0.562, p<0.0001). No significant association was found between %10-year CVD risk and hsCRP. Collectively, these results corroborate that dyslipidemic Mexican-American adults have higher CVD risk than normolipidemic individuals. Hyperglycemia may further affect CVD risk by modulating cholesterol in LDL and HDL subfractions.
ContributorsNeupane, Srijana (Author) / Vega-Lopez, Sonia (Thesis advisor) / Shaibi, Gabriel Q (Committee member) / Johnston, Carol S (Committee member) / Arizona State University (Publisher)
Created2011
150121-Thumbnail Image.png
Description
Studies have demonstrated that anthocyanins can function as antioxidants, reduce inflammation, and improve dyslipidemia. Tart cherries are anthocyanin-rich, making them particularly attractive as a functional food to improve cardiovascular disease (CVD) risk. There have been few published studies to date examining the impact of tart cherries on biomarkers of dyslipidemia

Studies have demonstrated that anthocyanins can function as antioxidants, reduce inflammation, and improve dyslipidemia. Tart cherries are anthocyanin-rich, making them particularly attractive as a functional food to improve cardiovascular disease (CVD) risk. There have been few published studies to date examining the impact of tart cherries on biomarkers of dyslipidemia and inflammation, particularly in overweight and obese individuals at high risk for these conditions. This study evaluated the effect of consuming 100% tart cherry juice daily on blood lipids including total cholesterol, low-density lipoprotein cholesterol (LDL-C), calculated very low density lipoprotein cholesterol (VLDL-C), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), and the CVD risk ratios, as well as the inflammatory biomarkers interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor-alpha (TNF-alpha), C-reactive protein (CRP), monocyte chemotactic protein-1 (MCP-1), and erythrocyte sedimentation rate (ESR) following a 4-week period. Based on the high anthocyanin content of tart cherries, it was hypothesized that the lipid and inflammatory profiles would be significantly improved following the intervention. A total of 26 men and women completed this 4-week randomized, single-blind, placebo-controlled, crossover study. Participants were randomized to drink either 8 ounces of placebo beverage or tart cherry juice daily for 4 weeks. Following a 4-week washout period, the alternate beverage was consumed. Ultimately, this investigation demonstrated no statistically significant alterations in any of the lipid or inflammatory biomarkers when analyzed across time and between interventions (p > 0.05). As expected, glucose and insulin parameters remained stable over the duration of the study, as well as self-reported physical activity level, total calorie consumption, and macronutrient intake. However, trans-fat was reported to be significantly higher during the cherry arm of the study as compared to the placebo arm (p < 0.05), potentially confounding other results. Although the results of this study were equivocal, it is feasible that a higher dose, longer treatment duration, or more susceptible target population may be required to elicit significant effects. Consequently, further investigation is necessary to clarify this research.
ContributorsColes, Katie (Author) / Martin, Keith R. (Thesis advisor) / Traustadottir, Tinna (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2012
161951-Thumbnail Image.png
Description
Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method

Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method that can regulate pGC-A, structural information regarding its intact form is necessary. Currently, only the extracellular domain structure of rat pGC-A has been determined. However, structural data regarding the transmembrane domain, as well as functional intracellular domain regions, need to be elucidated.This dissertation presents detailed information regarding pGC-A expression and optimization in the baculovirus expression vector system, along with the first purification method for purifying functional intact human pGC-A. The first in vitro evidence of a purified intact human pGC-A tetramer was detected in detergent micellar solution. Intact pGC-A is currently proposed to function as a homodimer. Upon analyzing my findings and acknowledging that dimer formation is required for pGC-A functionality, I proposed the first tetramer complex model composed of two functional subunits (homodimer). Forming tetramer complexes on the cell membrane increases pGC-A binding efficiency and ligand sensitivity. Currently, a two-step mechanism has been proposed for ATP-dependent pGC-A signal transduction. Based on cGMP functional assay results, it can be suggested that the binding ligand also moderately activates pGC-A, and that ATP is not crucial for the activation of guanylyl cyclase. Instead, three modulators can regulate different activation levels in intact pGC-A. Crystallization of purified intact pGC-A was performed to determine its structure. During the crystallization condition screening process, I successfully selected seven promising initial crystallization conditions for intact human pGC-A crystallization. One selected condition led to the formation of excellent needle-shaped crystals. During the serial crystallography diffraction experiment, five diffraction patterns were detected. The highest diffraction resolution spot reached 3 Å. This work will allow the determination of the intact human pGC-A structure while also providing structural information on the protein signal transduction mechanism. Further structural knowledge may potentially lead to improved drug design. More precise mutation experiments could help verify the current pGC-A signal transduction and activation mechanism.
ContributorsZhang, Shangji (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2021
158683-Thumbnail Image.png
Description
This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified

This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified protein was dimeric as shown by native polyacrylamide gel electrophoresis and small angle X-ray scattering (SAXS) analysis, with an abundance of β-strands based on circular dichroism spectroscopy. SAXS data supports the presence of a pore. Furthermore, protein crystals of membrane translocated FopA were obtained with preliminary X-ray diffraction data. The identified crystallization condition provides the means towards FopA structure determination; a valuable tool for structure-based design of anti-tularemia therapeutics.

Next, the nonstructural protein μNS of avian reoviruses was investigated using in vivo crystallization and serial femtosecond X-ray crystallography. Avian reoviruses infect poultry flocks causing significant economic losses. μNS is crucial in viral factory formation facilitating viral replication within host cells. Thus, structure-based targeting of μNS has the potential to disrupt intracellular viral propagation. Towards this goal, crystals of EGFP-tagged μNS (EGFP-μNS (448-605)) were produced in insect cells. The crystals diffracted to 4.5 Å at X-ray free electron lasers using viscous jets as crystal delivery methods and initial electron density maps were obtained. The resolution reported here is the highest described to date for μNS, which lays the foundation towards its structure determination.

Finally, structural, and functional studies of human Threonine aspartase 1 (Taspase1) were performed. Taspase1 is overexpressed in many liquid and solid malignancies. In the present study, using strategic circular permutations and X-ray crystallography, structure of catalytically active Taspase1 was resolved. The structure reveals the conformation of a 50 residues long fragment preceding the active side residue (Thr234), which has not been structurally characterized previously. This fragment adopted a straight helical conformation in contrast to previous predictions. Functional studies revealed that the long helix is essential for proteolytic activity in addition to the active site nucleophilic residue (Thr234) mediated proteolysis. Together, these findings enable a new approach for designing anti-cancer drugs by targeting the long helical fragment.
ContributorsNagaratnam, Nirupa (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2020