This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

150221-Thumbnail Image.png
Description
Mexican Americans have an increased risk for type 2 diabetes and premature cardiovascular disease (CVD). The association of hyperglycemia with traditional CVD risk factors in this population has been established, but there is limited data regarding other non-traditional CVD risk factors. Thus, this cross-sectional study was conducted to evaluate CVD

Mexican Americans have an increased risk for type 2 diabetes and premature cardiovascular disease (CVD). The association of hyperglycemia with traditional CVD risk factors in this population has been established, but there is limited data regarding other non-traditional CVD risk factors. Thus, this cross-sectional study was conducted to evaluate CVD risk among Mexican Americans by measuring concentrations of lipids, high-sensitivity C-reactive protein (hsCRP), and cholesterol in low-density-lipoprotein (LDL) and high-density-lipoprotein (HDL) subfractions. Eighty overweight/obese Mexican-American adults participating in the Maricopa Insulin Resistance Initiative were randomly selected from each of the following four groups (n = 20 per group): nomolipidemic
ormoglycemic controls (NC), dyslipidemic
ormoglycemic (DN), dyslipidemic/prediabetic (DPD) and dyslipidemic/diabetic (DD). Total cholesterol (TC) was 30% higher among DD than in NC participants (p<0.0001). The DPD group had 27% and 12% higher LDL-C concentrations than the NC and DN groups, respectively. Similarly, LDL-C was 29% and 13% higher in DD than in NC and DN participants (p=0.013). An increasing trend was observed in %10-year CVD risk with increasing degree of hyperglycemia (p<0.0001). The NC group had less cholesterol in sdLDL particles than dyslipidemic groups, regardless of glycemic status (p<0.0001). When hyperglycemia was part of the phenotype (DPD and DD), there was a greater proportion of total and HDL-C in sHDL particles in dyslipidemic individuals than in NC (p=0.023; p<0.0001; respectively). Percent 10-year CVD risk was positively correlated with triglyceride (TG) (r=0.384, p<0.0001), TC (r=0.340, p<0.05), cholesterol in sdLDL(r=0.247; p<0.05), and TC to HDL-C ratio (r=0.404, p<0.0001), and negatively correlated with HDL-C in intermediate and large HDL(r=-0.38, p=0.001; r=0.34, p=0.002, respectively). The TC/HDL-C was positively correlated with cholesterol in sdLDL particles (r=0.698, p<0.0001) and HDL-C in sHDL particles (r=0.602, p<0.0001), and negatively correlated with cholesterol in small (r=-0.35, p=0.002), intermediate (r=-0.91, p<0.0001) and large (r=-0.84, p<0.0001) HDL particles, and HDL-C in the large HDL particles (r=-0.562, p<0.0001). No significant association was found between %10-year CVD risk and hsCRP. Collectively, these results corroborate that dyslipidemic Mexican-American adults have higher CVD risk than normolipidemic individuals. Hyperglycemia may further affect CVD risk by modulating cholesterol in LDL and HDL subfractions.
ContributorsNeupane, Srijana (Author) / Vega-Lopez, Sonia (Thesis advisor) / Shaibi, Gabriel Q (Committee member) / Johnston, Carol S (Committee member) / Arizona State University (Publisher)
Created2011
151229-Thumbnail Image.png
Description
It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be

It has been well established that mitochondria play a critical role in the pathology of Friedreich's Ataxia. This disease is believed to be caused by a deficiency of frataxin, which research suggests is responsible for iron sulfur cluster assembly. This incomplete assembly of iron sulfur clusters is believed to be linked with dysfunctional complexes in the mitochondrial respiratory chain, increased oxidative stress, and potential cell death. Increased understanding of the pathophysiology of this disease has enabled the development of various therapeutic strategies aimed at restoring mitochondrial respiration. This thesis contains an analysis of the biological activity of several classes of antioxidants against oxidative stress induced by diethyl maleate in Friedreich's Ataxia lymphocytes and CEM leukemia cells. Analogues of vitamin E α-tocopherol have been shown to protect cells under oxidative stress. However, these same analogues show various levels of inhibition towards the electron transport chain complex I. Bicyclic pyridinols containing a ten carbon substituent provided favorable cytoprotection. N-hydroxy-4-pyridone compounds were observed to provide little protection. Similarly, analogues of CoQ10 in the form of pyridinol and pyrimidinol compounds also preserved cell viability at low concentrations.
ContributorsJaruvangsanti, Jennifer (Author) / Hecht, Sidney (Thesis advisor) / Woodbury, Neal (Committee member) / Skibo, Edward (Committee member) / Arizona State University (Publisher)
Created2012
193390-Thumbnail Image.png
Description
Chronic low-grade inflammation is a main pathogenic link between obesity and Type 2 Diabetes (T2D) and a putative target for treatment. While a wide array of pharmacologic agents is available to manage T2D, many patients still face perturbed glycemia and subclinical inflammation. Therefore, complementary nutraceutical strategies that target inflammation, metabolism,

Chronic low-grade inflammation is a main pathogenic link between obesity and Type 2 Diabetes (T2D) and a putative target for treatment. While a wide array of pharmacologic agents is available to manage T2D, many patients still face perturbed glycemia and subclinical inflammation. Therefore, complementary nutraceutical strategies that target inflammation, metabolism, and resolution physiology hold promise as adjunctive options to quell the disturbed immuno-metabolic milieu observed in T2D. Omega-3 polyunsaturated fatty acids (PUFAs) and anthocyanins are two dietary components evidenced to mitigate inflammation and improve T2D risk factors, through distinct and similar targets. However, the combined use of such nutraceuticals has not yet been examined in individuals with T2D. This dissertation leveraged data from a larger randomized, double-blind, placebo-controlled trial conducted between January 2022—September 2023 investigating the use of combined supplementation (active treatment; [FOM]) of anthocyanins (600 mg/d maqui berry extract) and omega-3 PUFAs (3 g/day fish oil; 2 g/d EPA, 1 g/d DHA) for 8 weeks on cytokines and mental acuity in individuals with T2D, compared to a placebo (CON). The current study examined the effects of this supplemental strategy on markers of metabolic inflammation, oxidative stress, and cardiometabolic risk. The results indicated that a marker of sustained omega-3 dietary intake and tissue accumulation termed the Omega-3 Index was inversely associated with HbA1c (? = -8.5, 95%CI -15.1, -1.4, p = 0.022) and glucose (? = -12.4, 95%CI -22.9, -0.5, p = 0.042), after adjustment for covariates at baseline across all participants with T2D in this study. However, outcomes from linear mixed model analyses demonstrated that there were no significant differences in change from baseline between FOM and CON groups at week 8 in any of the inflammatory, oxidative stress, glycemic control, or circulating lipid markers assessed in this study. These null effects were observed despite a 93% greater increase from baseline in the Omega-3 Index observed in the FOM group compared to the CON group at week 8. Therefore, the findings do not support significant treatment effects associated with 2 months of combined marine omega-3 PUFAs and maqui berry extract on inflammatory and cardiometabolic outcomes in individuals with T2D.
ContributorsFessler, Samantha Nicole (Author) / Johnston, Carol S (Thesis advisor) / Sweazea, Karen (Committee member) / Wang, Shu (Committee member) / Kavouras, Stavros A (Committee member) / Grimm, Kevin J (Committee member) / Arizona State University (Publisher)
Created2024
157213-Thumbnail Image.png
Description
The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to

The highly predictable structural and thermodynamic behavior of deoxynucleic acid (DNA) and ribonucleic acid (RNA) have made them versatile tools for creating artificial nanostructures over broad range. Moreover, DNA and RNA are able to interact with biological ligand as either synthetic aptamers or natural components, conferring direct biological functions to the nucleic acid devices. The applications of nucleic acids greatly relies on the bio-reactivity and specificity when applied to highly complexed biological systems.

This dissertation aims to 1) develop new strategy to identify high affinity nucleic acid aptamers against biological ligand; and 2) explore highly orthogonal RNA riboregulators in vivo for constructing multi-input gene circuits with NOT logic. With the aid of a DNA nanoscaffold, pairs of hetero-bivalent aptamers for human alpha thrombin were identified with ultra-high binding affinity in femtomolar range with displaying potent biological modulations for the enzyme activity. The newly identified bivalent aptamers enriched the aptamer tool box for future therapeutic applications in hemostasis, and also the strategy can be potentially developed for other target molecules. Secondly, by employing a three-way junction structure in the riboregulator structure through de-novo design, we identified a family of high-performance RNA-sensing translational repressors that down-regulates gene translation in response to cognate RNAs with remarkable dynamic range and orthogonality. Harnessing the 3WJ repressors as modular parts, we integrate them into biological circuits that execute universal NAND and NOR logic with up to four independent RNA inputs in Escherichia coli.
ContributorsZhou, Yu (Ph.D.) (Author) / Yan, Hao (Thesis advisor) / Green, Alexander (Thesis advisor) / Woodbury, Neal (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2019
156312-Thumbnail Image.png
Description
Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only

Glycans are monosaccharide-based heteropolymers that are found covalently attached to many different proteins and lipids and are ubiquitously displayed on the exterior surfaces of cells. Serum glycan composition and structure are well known to be altered in many different types of cancer. In fact, glycans represent a promising but only marginally accessed source of cancer markers. The approach used in this dissertation, which is referred to as “glycan node analysis”, is a molecularly bottom-up approach to plasma/serum (P/S) glycomics based on glycan linkage analysis that captures features such as α2-6 sialylation, β1-6 branching, and core fucosylation as single analytical signals.

The diagnostic utility of this approach as applied to lung cancer patients across all stages as well as prostate, serous ovarian, and pancreatic cancer patients compared to certifiably healthy individuals, nominally healthy individuals and/or risk-matched controls is reported. Markers for terminal fucosylation, α2-6 sialylation, β1-4 branching, β1-6 branching and outer-arm fucosylation were most able to differentiate cases from controls. These markers behaved in a stage-dependent manner in lung cancer as well as other types of cancer. Using a Cox proportional hazards regression model, the ability of these markers to predict progression and survival in lung cancer patients was assessed. In addition, the potential mechanistic role of aberrant P/S glycans in cancer progression is discussed.

Plasma samples from former bladder cancer patients with currently no evidence of disease (NED), non-muscle invasive bladder cancer (NMIBC), and muscle invasive bladder cancer (MIBC) along with certifiably healthy controls were analyzed. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from controls; but NED, NMIBC, and MIBC were not distinguished from one another. Markers for α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. These two glycan features were found to be correlated to the concentration of C-reactive protein, a known prognostic marker for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
ContributorsRoshdiferdosi, Shadi (Author) / Borges, Chad R (Thesis advisor) / Woodbury, Neal (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2018
156131-Thumbnail Image.png
Description
Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a

Though DNA nanostructures (DNs) have become interesting subjects of drug delivery, in vivo imaging and biosensor research, however, for real biological applications, they should be ‘long circulating’ in blood. One of the crucial requirements for DN stability is high salt concentration (like ~5–20 mM Mg2+) that is unavailable in a cell culture medium or in blood. Hence DNs denature promptly when injected into living systems. Another important factor is the presence of nucleases that cause fast degradation of unprotected DNs. The third factor is ‘opsonization’ which is the immune process by which phagocytes target foreign particles introduced into the bloodstream. The primary aim of this thesis is to design strategies that can improve the in vivo stability of DNs, thus improving their pharmacodynamics and biodistribution.

Several strategies were investigated to address the three previously mentioned limitations. The first attempt was to study the effect length and conformation of polyethylene glycol (PEG) on DN stability. DNs were also coated with PEG-lipid and human serum albumin (HSA) and their stealth efficiencies were compared. The findings reveal that both PEGylation and albumin coating enhance low salt stability, increase resistance towards nuclease action and reduce uptake of DNs by macrophages. Any protective coating around a DN increases its hydrodynamic radius, which is a crucial parameter influencing their clearance. Keeping this in mind, intrinsically stable DNs that can survive low salt concentration without any polymer coating were built. Several DNA compaction agents and DNA binders were screened to stabilize DNs in low magnesium conditions. Among them arginine, lysine, bis-lysine and hexamine cobalt showed the potential to enhance DN stability.

This thesis also presents a sensitive assay, the Proximity Ligation Assay (PLA), for the estimation of DN stability with time. It requires very simple modifications on the DNs and it can yield precise results from a very small amount of sample. The applicability of PLA was successfully tested on several DNs ranging from a simple wireframe tetrahedron to a 3D origami and the protocol to collect in vivo samples, isolate the DNs and measure their stability was developed.
ContributorsBanerjee, Saswata (Author) / Yan, Hao (Thesis advisor) / Angell, Austen (Committee member) / Woodbury, Neal (Committee member) / Liu, Yan (Committee member) / Arizona State University (Publisher)
Created2018
161707-Thumbnail Image.png
Description
Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to

Exerting bias on a diverse pool of random short single stranded oligonucleotides (ODNs) by favoring binding to a specific target has led to the identification of countless high affinity aptamers with specificity to a single target. By exerting this same bias without prior knowledge of targets generates libraries to capture the complex network of molecular interactions presented in various biological states such as disease or cancer. Aptamers and enriched libraries have vast applications in bio-sensing, therapeutics, targeted drug delivery, biomarker discovery, and assay development. Here I describe a novel method of computational biophysical characterization of molecular interactions between a single aptamer and its cognate target as well as an alternative to next generation sequencing (NGS) as a readout for a SELEX-based assay. I demonstrate the capability of an artificial neural network (ANN) trained on the results of screening an aptamer against a random sampling of a combinatorial library of short synthetic 11mer peptides to accurately predict the binding intensities of that aptamer to the remainder of the combinatorial space originally sampled. This machine learned comprehensive non-linear relationship between amino acid sequence and aptamer binding to synthetic peptides can also make biologically relevant predictions for probable molecular interactions between the aptamer and its cognate target. Results of SELEX-based assays are determined by quantifying the presence and frequency of informative species after probing patient specimen. Here I show the potential of DNA microarrays to simultaneously monitor a pool of informative sequences within a diverse library with similar variability and reproducibility as NGS.
ContributorsLevenberg, Symon (Author) / Woodbury, Neal (Thesis advisor) / Borges, Chad (Committee member) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
158847-Thumbnail Image.png
Description
RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding

RNA aptamers adopt tertiary structures that enable them to bind to specific ligands. This capability has enabled aptamers to be used for a variety of diagnostic, therapeutic, and regulatory applications. This dissertation focuses on the use RNA aptamers in two biological applications: (1) nucleic acid diagnostic assays and (2) scaffolding of enzymatic pathways. First, sensors for detecting arbitrary target RNAs based the fluorogenic RNA aptamer Broccoli are designed and validated. Studies of three different sensor designs reveal that toehold-initiated Broccoli-based aptasensors provide the lowest signal leakage and highest signal intensity in absence and in presence of the target RNA, respectively. This toehold-initiated design is used for developing aptasensors targeting pathogens. Diagnostic assays for detecting pathogen nucleic acids are implemented by integrating Broccoli-based aptasensors with isothermal amplification methods. When coupling with recombinase polymerase amplification (RPA), aptasensors enable detection of synthetic valley fever DNA down to concentrations of 2 fM. Integration of Broccoli-based aptasensors with nucleic acid sequence-based amplification (NASBA) enables as few as 120 copies/mL of synthetic dengue RNA to be detected in reactions taking less than three hours. Moreover, the aptasensor-NASBA assay successfully detects dengue RNA in clinical samples. Second, RNA scaffolds containing peptide-binding RNA aptamers are employed for programming the synthesis of nonribosomal peptides (NRPs). Using the NRP enterobactin pathway as a model, RNA scaffolds are developed to direct the assembly of the enzymes entE, entB, and entF from E. coli, along with the aryl-carrier protein dhbB from B. subtilis. These scaffolds employ X-shaped RNA motifs from bacteriophage packaging motors, kissing loop interactions from HIV, and peptide-binding RNA aptamers to position peptide-modified NRP enzymes. The resulting RNA scaffolds functionalized with different aptamers are designed and evaluated for in vitro production of enterobactin. The best RNA scaffold provides a 418% increase in enterobactin production compared with the system in absence of the RNA scaffold. Moreover, the chimeric scaffold, with E. coli and B. subtilis enzymes, reaches approximately 56% of the activity of the wild-type enzyme assembly. The studies presented in this dissertation will be helpful for future development of nucleic acid-based assays and for controlling protein interaction for NRPs biosynthesis.
ContributorsTang, Anli (Author) / Green, Alexander (Thesis advisor) / Yan, Hao (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2020
158875-Thumbnail Image.png
Description
Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that

Elucidation of Antigen-Antibody (Ag-Ab) interactions is critical to the understanding of humoral immune responses to pathogenic infection. B cells are crucial components of the immune system that generate highly specific antibodies, such as IgG, towards epitopes on antigens. Serum IgG molecules carry specific molecular recognition information concerning the antigens that initiated their production. If one could read it, this information can be used to predict B cell epitopes on target antigens in order to design effective epitope driven vaccines, therapies and serological assays. Immunosignature technology captures the specific information content of serum IgG from infected and uninfected individuals on high density microarrays containing ~105 nearly random peptide sequences. Although the sequences of the peptides are chosen to evenly cover amino acid sequence space, the pattern of serum IgG binding to the array contains a consistent signature associated with each specific disease (e.g., Valley fever, influenza) among many individuals. Here, the disease specific but agnostic behavior of the technology has been explored by profiling molecular recognition information for five pathogens causing life threatening infectious diseases (e.g. DENV, WNV, HCV, HBV, and T.cruzi). This was done by models developed using a machine learning algorithm to model the sequence dependence of the humoral immune responses as measured by the peptide arrays. It was shown that the disease specific binding information could be accurately related to the peptide sequences used on the array by the machine learning (ML) models. Importantly, it was demonstrated that the ML models could identify or predict known linear epitopes on antigens of the four viruses. Moreover, the models identified potential novel linear epitopes on antigens of the four viruses (each has 4-10 proteins in the proteome) and of T.cruzi (a eukaryotic parasite which has over 12,000 proteins in its proteome). Finally, the predicted epitopes were tested in serum IgG binding assays such as ELISAs. Unfortunately, the assay results were inconsistent due to problems with peptide/surface interactions. In a separate study for the development of antibody recruiting molecules (ARMs) to combat microbial infections, 10 peptides from the high density peptide arrays were tested in IgG binding assays using sera of healthy individuals to find a set of antibody binding termini (ABT, a ligand that binds to a variable region of the IgG). It was concluded that one peptide (peptide 7) may be used as a potential ABT. Overall, these findings demonstrate the applications of the immunosignature technology ranging from developing tools to predict linear epitopes on pathogens of small to large proteomes to the identification of an ABT for ARMs.
ContributorsCHOWDHURY, ROBAYET (Author) / Woodbury, Neal (Thesis advisor) / LaBaer, Joshua (Committee member) / Sulc, Petr (Committee member) / Arizona State University (Publisher)
Created2020