This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156941-Thumbnail Image.png
Description
Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics can be combined with separation science to address challenges of

Microfluidic systems have gained popularity in the last two decades for their potential applications in manipulating micro- and nano- particulates of interest. Several different microfluidics devices have been built capable of rapidly probing, sorting, and trapping analytes of interest. Microfluidics can be combined with separation science to address challenges of obtaining a concentrated and pure distinct analyte from mixtures of increasingly similar entities. Many of these techniques have been developed to assess biological analytes of interest; one of which is dielectrophoresis (DEP), a force which acts on polarizable analytes in the presence of a non-uniform electric fields. This method can achieve high resolution separations with the unique attribute of concentrating, rather than diluting, analytes upon separation. Studies utilizing DEP have manipulated a wide range of analytes including various cell types, proteins, DNA, and viruses. These analytes range from approximately 50 nm to 1 µm in size. Many of the currently-utilized techniques for assessing these analytes are time intensive, cost prohibitive, and require specialized equipment and technical skills.

The work presented in this dissertation focuses on developing and utilizing insulator-based dielectrophoresis (iDEP) to probe a wide range of analytes; where the intrinsic properties of an analyte will determine its behavior in a microchannel. This is based on the analyte’s interactions with the electrokinetic and dielectrophoretic forces present. Novel applications of this technique to probe the biophysical difference(s) between serovars of the foodborne pathogen, Listeria monocytogenes, and surface modified Escherichia coli, are investigated. Both of these applications demonstrate the capabilities of iDEP to achieve high resolution separations and probe slight changes in the biophysical properties of an analyte of interest. To improve upon existing iDEP strategies a novel insulator design which streamlines analytes in an iDEP device while still achieving the desirable forces for separation is developed, fabricated, and tested. Finally, pioneering work to develop an iDEP device capable of manipulating larger analytes, which range in size 10-250 µm, is presented.
ContributorsCrowther, Claire Victoria (Author) / Hayes, Mark A. (Thesis advisor) / Gile, Gillian H (Committee member) / Ros, Alexandra (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
153855-Thumbnail Image.png
Description
Biological fluids, in particular blood plasma, provide a vital source of information on the state of human health. While specific detection of biomarker species can aid in disease diagnostics, the complexity of plasma makes analysis challenging. Despite the challenge of complex sample analysis, biomarker quantification has become a primary interest

Biological fluids, in particular blood plasma, provide a vital source of information on the state of human health. While specific detection of biomarker species can aid in disease diagnostics, the complexity of plasma makes analysis challenging. Despite the challenge of complex sample analysis, biomarker quantification has become a primary interest in biomedical analysis. Due to the extremely specific interaction between antibody and analyte, immunoassays are attractive for the analysis of these samples and have gained popularity since their initial introduction several decades ago. Current limitations to diagnostics through blood testing include long incubation times, interference from non-specific binding, and the requirement for specialized instrumentation and personnel. Optimizing the features of immunoassay for diagnostic testing and biomarker quantification would enable early and accurate detection of disease and afford rapid intervention, potentially improving patient outcomes. Improving the limit of quantitation for immunoassay has been the primary goal of many diverse experimental platforms. While the ability to accurately quantify low abundance species in a complex biological sample is of the utmost importance in diagnostic testing, models illustrating experimental limitations have relied on mathematical fittings, which cannot be directly related to finite analytical limits or fundamental relationships. By creating models based on the law of mass action, it is demonstrated that fundamental limitations are imposed by molecular shot noise, creating a finite statistical limitation to quantitative abilities. Regardless of sample volume, 131 molecules are necessary for quantitation to take place with acceptable levels of uncertainty. Understanding the fundamental limitations of the technique can aid in the design of immunoassay platforms, and assess progress toward the development of optimal diagnostic testing. A sandwich-type immunoassay was developed and tested on three separate human protein targets: myoglobin, heart-type fatty acid binding protein, and cardiac troponin I, achieving superior limits of quantitation approaching ultimate limitations. Furthermore, this approach is compatible with upstream sample separation methods, enabling the isolation of target molecules from a complex biological sample. Isolation of target species prior to analysis allows for the multiplex detection of biomarker panels in a microscale device, making the full optimization of immunoassay techniques possible for clinical diagnostics.
ContributorsWoolley, Christine F (Author) / Hayes, Mark A. (Thesis advisor) / Ros, Alexandra (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2015
158604-Thumbnail Image.png
Description
Oxidoreductases catalyze transformations important in both bioenergetics and microbial technologies. Nonetheless, questions remain about how to tune them to modulate properties such as preference for catalysis in the oxidative or reductive direction, the potential range of activity, or coupling of multiple reactions. Using protein film electrochemistry, the features that control

Oxidoreductases catalyze transformations important in both bioenergetics and microbial technologies. Nonetheless, questions remain about how to tune them to modulate properties such as preference for catalysis in the oxidative or reductive direction, the potential range of activity, or coupling of multiple reactions. Using protein film electrochemistry, the features that control these properties are defined by comparing the activities of five [FeFe]-hydrogenases and two thiosulfate reductases. Although [FeFe]-hydrogenases are largely described as hydrogen evolution catalysts, the catalytic bias of [FeFe]-hydrogenases, i.e. the ratio of maximal reductive to oxidative activities, spans more than six orders of magnitude. At one extreme, two [FeFe]-hdyrogenases, Clostridium pasteuriaunum HydAII and Clostridium symbiosum HydY, are far more active for hydrogen oxidation than hydrogen evolution. On the other extreme, Clostridium pasteurianum HydAI and Clostridium acetobutylicum HydA1 have a neutral bias, in which both proton reduction and hydrogen oxidation are efficient. By investigating a collection of site-directed mutants, it is shown that the catalytic bias of [FeFe]-hydrogenases is not trivially correlated with the identities of residues in the primary or secondary coordination sphere. On the other hand, the catalytic bias of Clostridium acetobutylicum HydAI can be modulated via mutation of an amino acid residue coordinating the terminal [FeS] cluster. Simulations suggest that this change in catalytic bias may be linked to the reduction potential of the cluster.

Two of the enzymes examined in this work, Clostridium pasteurianum HydAIII and Clostridium symbiosum HydY, display novel catalytic properties. HydY is exclusively a hydrogen oxidizing catalyst, and it couples this activity to peroxide reduction activity at a rubrerythrin center in the same enzyme. On the other hand, CpIII operates only in a narrow potential window, inactivating at oxidizing potentials. This suggests it plays a novel physiological role that has not yet been identified. Finally, the electrocatalytic properties of Pyrobaculum aerophilum thiosulfate reductase with either Mo or W in the active site are compared. In both cases, the onset of catalysis corresponds to reduction of the active site. Overall, the Mo enzyme is more active, and reduces thiosulfate with less overpotential.
ContributorsWilliams, Samuel Garrett (Author) / Jones, Anne K (Thesis advisor) / Hayes, Mark A. (Committee member) / Trovitch, Ryan J (Committee member) / Arizona State University (Publisher)
Created2020