This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

149356-Thumbnail Image.png
Description
The metalloenzyme quercetin 2,3-dioxygenase (QueD) catalyzes the oxidative decomposition of the aromatic compound, quercetin. The most recently characterized example is a product of the bacterium Bacillus subtilis (BsQueD); all previous examples were fungal enzymes from the genus Aspergillus (AQueD). AQueD contains a single atom of Cu(II) per monomer. However, BsQueD,

The metalloenzyme quercetin 2,3-dioxygenase (QueD) catalyzes the oxidative decomposition of the aromatic compound, quercetin. The most recently characterized example is a product of the bacterium Bacillus subtilis (BsQueD); all previous examples were fungal enzymes from the genus Aspergillus (AQueD). AQueD contains a single atom of Cu(II) per monomer. However, BsQueD, over expressed in Escherichia coli, contains Mn(II) and has two metal-binding sites, and therefore two possible active sites per monomer. To understand the contribution of each site to BsQueD's activity, the N-terminal and C-terminal metal-binding sites have been mutated individually in an effort to disrupt metal binding. In wild type BsQueD, each Mn(II) is ligated by three histidines (His) and one glutamate (Glu). All efforts to mutate His residues to non-ligating residues resulted in insoluble protein or completely inactive enzyme. A soluble mutant was expressed that replaced the Glu residue with a fourth His at the N-terminal domain. This mutant (E69H) has a specific activity of 0.00572 &mumol;/min/mg, which is nearly 3000-fold lower than the rate of wild type BsQueD (15.9 &mumol;/min/mg). Further analysis of E69H by inductively couple plasma mass spectrometry revealed that this mutant contains only 0.062 mol of Mn(II) per mol of enzyme. This is evidence that disabling metal-ligation at one domain influences metal-incorporation at the other. During the course of the mutagenic study, a second, faster purification method was developed. A hexahistidine tag and an enterokinase cleavage site were fused to the N-terminus of BsQueD (6xHis-BsQueD). Active enzyme was successfully expressed and purified with a nickel column in 3 hours. This is much faster than the previous multi-column purification, which took two full days to complete. However, the concentration of soluble, purified enzyme (1.8 mg/mL) was much lower than concentrations achieved with the traditional method (30 mg/mL). While the concentration of 6xHis-BsQueD is sufficient for some analyses, there are several characterization techniques that must be conducted at higher concentrations. Therefore, it will be advantageous to continue using both purification methods in the future.
ContributorsBowen, Sara (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2010
149372-Thumbnail Image.png
Description
A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and

A novel small metal-binding protein (SmbP), with only 93 residues and no similarity to other known proteins, has been isolated from the periplasm of Nitrosomonas europaea. It is characterized by its high percentage (17%) of histidines, a motif of ten repeats of seven residues, a four α-helix bundle structure, and a high binding affinity to about six equivalents of Cu2+. The goal of this study is to investigate the Cu2+ binding sites in SmbP and to understand how Cu2+ stabilizes the protein. Preliminary folding experiments indicated that Cu2+ greatly stabilizes SmbP. In this study, protein folding data from circular dichroism (CD) spectroscopy was used to elucidate the role of Cu2+ in stabilizing SmbP structure against unfolding induced by decreased pH, increased temperature, and chemical denaturants. The significant stabilization effects of Cu2+ were demonstrated by the observation that Cu2+-SmbP remained fully folded under extreme environmental conditions, such as acidic pH, 96 °C, and 8 M urea. Also, it was shown that Cu2+ is able to induce the refolding of unfolded SmbP in acidic solutions. These findings imply that the coordination of Cu2+ to histidine residues is responsible for the stabilization effects. The crystal structure of SmbP without Cu2+ has been determined. However, attempts to crystallize Cu2+-SmbP have not been successful. In this study, multidimensional NMR experiments were conducted in order to gain additional information regarding the Cu2+-SmbP structure, in particular its metal binding sites. Unambiguous resonance assignments were successfully made. Cα secondary chemical shifts confirmed that SmbP has a four α-helical structure. A Cu2+-protein titration experiment monitored by NMR indicated a top-to-bottom, sequential metal binding pattern for SmbP. In addition, several bioinformatics tools were used to complement the experimental approach and identity of the ligands in Cu2+-binding sites in SmbP is proposed.
ContributorsYan, Qin (Author) / Francisco, Wilson A (Thesis advisor) / Allen, James (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
157427-Thumbnail Image.png
Description
Generating amorphous solid dispersions (ASDs) containing active pharmaceutical ingredients has become a favorable technique of emerging prominence to improve drug solubility and overall bioavailability. Cannabidiol (CBD) has now become a major focus in cannabinoid research due to its ability to serve as an anti-inflammatory agent, showing promising results in treating

Generating amorphous solid dispersions (ASDs) containing active pharmaceutical ingredients has become a favorable technique of emerging prominence to improve drug solubility and overall bioavailability. Cannabidiol (CBD) has now become a major focus in cannabinoid research due to its ability to serve as an anti-inflammatory agent, showing promising results in treating a wide array of debilitating diseases and pathologies. The following work provides evidence for generating homogenous glass phase amorphous solid dispersions containing 50% (w/w) up to 75% (w/w) CBD concentrations in the domain size of 2 – 5 nm. Concentrations up to 85% (w/w) CBD were concluded homogenous in the supercooled liquid phase in domain sizes of 20 – 30 nm. The results were obtained from polarized light microscopy (PLM), differential scanning calorimetry (DSC), as well as solution and solid-state NMR spectroscopy.
ContributorsBlass, Brandon Lewis (Author) / Yarger, Jeff L (Thesis advisor) / Holland, Greg (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2019
156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
ContributorsSisco, Nicholas John (Author) / Van Horn, Wade D (Thesis advisor) / Mills, Jeremy H (Committee member) / Wang, Xu (Committee member) / Yarger, Jeff L (Committee member) / Arizona State University (Publisher)
Created2018
157186-Thumbnail Image.png
Description
Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM

Glycosaminoglycans (GAGs) are long chains of negatively charged sulfated polysaccharides. They are often found to be covalently attached to proteins and form proteoglycans in the extracellular matrix (ECM). Many proteins bind GAGs through electrostatic interactions. GAG-binding proteins (GBPs) are involved in diverse physiological activities ranging from bacterial infections to cell-cell/cell-ECM contacts. This thesis is devoted to understanding how interactions between GBPs and their receptors modulate biological phenomena. Bacteria express GBPs on surface that facilitate dissemination and colonization by attaching to host ECM. The first GBP investigated in this thesis is decorin binding protein (DBP) found on the surface of Borrelia burgdorferi, causative pathogens in Lyme disease. DBPs bind GAGs of decorin, a proteoglycan in ECM. Of the two isoforms, DBPB is less studied than DBPA. In current work, structure of DBPB from B. burgdorferi and its GAG interactions were investigated using solution NMR techniques. DBPB adopts a five-helical structure, similar to DBPA. Despite similar GAG affinities, DBPB has its primary GAG-binding site on the lysine-rich C terminus, which is different from DBPA. Besides GAGs, GBPs in ECM also interact with cell surface receptors, such as integrins. Integrins belong to a big family of heterodimeric transmembrane proteins that receive extracellular cues and transmit signals bidirectionally to regulate cell adhesion, migration, growth and survival. The second part of this thesis focuses on αM I-domain of the promiscuous integrin αMβ2 (Mac-1 or CD11b/CD18) and explores the structural mechanism of αM I-domain interactions with pleiotrophin (PTN) and platelet factor 4 (PF4), which are cationic proteins with high GAG affinities. After completing the backbone assignment of αM I-domain, paramagnetic relaxation enhancement (PRE) experiments were performed to show that both PTN and PF4 bind αM I-domain using metal ion dependent adhesion site (MIDAS) in an Mg2+ independent way, which differs from the classical Mg2+ dependent mechanism used by all known integrin ligands thus far. In addition, NMR relaxation dispersion analysis revealed unique inherent conformational dynamics in αM I-domain centered around MIDAS and the crucial C-terminal helix. These dynamic motions are potentially functionally relevant and may explain the ligand promiscuity of the receptor, but requires further studies.
ContributorsFeng, Wei (Biologist) (Author) / Wang, Xu (Thesis advisor) / Yarger, Jeff L (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2019