This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156617-Thumbnail Image.png
Description
Biological systems have long been known to utilize two processes for energy conservation: substrate-level phosphorylation and electron transport phosphorylation. Recently, a new bioenergetic process was discovered that increases ATP yields: flavin-based electron bifurcation (FBEB). This process couples an energetically favorable reaction with an energetically unfavorable one to conserve energy in

Biological systems have long been known to utilize two processes for energy conservation: substrate-level phosphorylation and electron transport phosphorylation. Recently, a new bioenergetic process was discovered that increases ATP yields: flavin-based electron bifurcation (FBEB). This process couples an energetically favorable reaction with an energetically unfavorable one to conserve energy in the organism. Currently, the mechanisms of enzymes that perform FBEB are unknown. In this work, NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (Nfn), a FBEB enzyme, is used as a model system to study this phenomenon. Nfn is a heterodimeric enzyme that reversibly couples the exergonic reduction of NADP+ by reduced ferredoxin with the endergonic reduction of NADP+ by NADH. Protein film electrochemistry (PFE) has been utilized to characterize the catalytic properties of three ferredoxins, possible substrates for Nfn enzymes, from organisms that perform FBEB: Pyrococcus furiosus (PfFd), Thermotoga maritima (TmFd), and Caldicellulosiruptor bescii (CbFd). Additionally, PFE is utilized to characterize three Nfn enzymes from two different archaea in the family Thermococcaceae: two from P. furiosus (PfNfnI and PfXfn), and one from Thermococcus sibiricus (TsNfnABC). Key results are as follows. The reduction potentials of the [4Fe4S]2+/1+ couple for all three ferredoxins are pH independent and modestly temperature dependent, and the Marcus reorganization energies of PfFd and TmFd are relatively small, suggesting optimized electron transfer. Electrocatalytic experiments show that PfNfnI is tuned for NADP+ reduction by both fast rates and a low binding constant for NADP+. A PfNfnI variant engineered to have only cysteines as coordinating ligands for its [FeS] clusters has significantly altered rates of electrocatalysis, substrate binding, and FBEB activity. This suggests that the heteroligands in the primary coordination sphere of the [FeS] clusters play a role in controlling catalysis by Nfn. Furthermore, a variant of PfNfnI lacking its small subunit, designed to probe allosteric effects at the bifurcating site, has altered substrate binding at the NADP(H) binding site, i.e. the bifurcation site. PfXfn and TsNfnABC, representing different types of Nfn enzymes, have different electrocatalytic properties than PfNfnI, including slower rates of FBEB. This suggests that Nfn enzymes vary significantly over phylogenetically similar organisms despite relatively high primary sequence homology.
ContributorsJennings, David Peter (Author) / Jones, Anne K (Thesis advisor) / Redding, Kevin E (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2018
154350-Thumbnail Image.png
Description
Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.
ContributorsHerschel, Daniel Jordan (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016