This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171418-Thumbnail Image.png
Description
Biopolymers perform the majority of essential functions necessary for life. From a small amount of components emerges considerable complexity in both structure and function. The separated timescales of dynamic processes and intricate intra- and inter-molecular interactions of these molecules necessitate the development and utilization of computational approaches for biopolymer study

Biopolymers perform the majority of essential functions necessary for life. From a small amount of components emerges considerable complexity in both structure and function. The separated timescales of dynamic processes and intricate intra- and inter-molecular interactions of these molecules necessitate the development and utilization of computational approaches for biopolymer study and nanotechnology applications. Biopolymer nanotechnology exploits the natural chemistry of biopolymers to perform novel functions at the nanoscale. Molecular dynamics is the numerical simulation of chemical entities according to the physical laws of motion and statistical mechanics. The number of atoms in biopolymers require coarse-grained methods to fully sample the dynamics of the system with reasonable resources. Accordingly, a coarse-grained molecular dynamics model for the characterization of hybrid nucleic acid-protein nanotechnology was developed. Proteins are represented as an anisotropic network model (ANM) which show good agreement with experimentally derived protein dynamics for a small computational cost. The model was subsequently applied to hybrid DNA-protein cages systems and exhibited excellent agreement with experimental results. Ongoing development efforts look to apply network models to oxDNA origami to create multiscale models for DNA origami. The network approximation will allow for detailed simulation of DNA origami association, of concern to DNA crystal and lattice formation. Identification and design of target-specific binders (aptamers) has received considerable attention on account of their diagnostic and therapeutic potential. Generated in selection cycles from extensive random libraries, biopolymer aptamers are of particular interest due to their potential non-immunogenic properties. Machine learning leverages the use of powerful statistical principles to train a model to transform an input into a desired output. Parameters of the model are iteratively adjusted according to the gradient of the cost function. An unsupervised and generative machine learning model was applied to Thrombin aptamer sequence data. From the model, sequence characteristics necessary for binding were identified and new aptamers capable of binding Thrombin were sampled and verified experimentally. Future work on the development and utilization of an unsupervised and interpretable machine learning model for unaligned sequence data is also discussed.
ContributorsProcyk, Jonah (Author) / Sulc, Petr (Thesis advisor) / Stephanopoulos, Nicholas (Thesis advisor) / Hariadi, Rizal (Committee member) / Heyden, Matthias (Committee member) / Arizona State University (Publisher)
Created2022
Description
This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In addition to the macroscopic properties of the solvent, the physical

This study aims to address the deficiencies of the Marcus model of electron transfer

(ET) and then provide modifications to the model. A confirmation of the inverted energy

gap law, which is the cleanest verification so far, is presented for donor-acceptor complexes.

In addition to the macroscopic properties of the solvent, the physical properties of the solvent

are incorporated in the model via the microscopic solvation model. For the molecules

studied in this dissertation, the rate constant first increases with cooling, in contrast to the

prediction of the Arrhenius law, and then decreases at lower temperatures. Additionally,

the polarizability of solute, which was not considered in the original Marcus theory, is included

by the Q-model of ET. Through accounting for the polarizability of the reactants, the

Q-model offers an important design principle for achieving high performance solar energy

conversion materials. By means of the analytical Q-model of ET, it is shown that including

molecular polarizability of C60 affects the reorganization energy and the activation barrier

of ET reaction.

The theory and Electrochemistry of Ferredoxin and Cytochrome c are also investigated.

By providing a new formulation for reaction reorganization energy, a long-standing disconnect

between the results of atomistic simulations and cyclic voltametery experiments is

resolved. The significant role of polarizability of enzymes in reducing the activation energy

of ET is discussed. The binding/unbinding of waters to the active site of Ferredoxin leads

to non-Gaussian statistics of energy gap and result in a smaller activation energy of ET.

Furthermore, the dielectric constant of water at the interface of neutral and charged

C60 is studied. The dielectric constant is found to be in the range of 10 to 22 which is

remarkably smaller compared to bulk water( 80). Moreover, the interfacial structural

crossover and hydration thermodynamic of charged C60 in water is studied. Increasing the

charge of the C60 molecule result in a dramatic structural transition in the hydration shell,

which lead to increase in the population of dangling O-H bonds at the interface.
ContributorsWaskasi, Morteza M (Author) / Matyushov, Dmitry (Thesis advisor) / Richert, Ranko (Committee member) / Heyden, Matthias (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2019