This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187325-Thumbnail Image.png
Description
SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want

SLAM (Simultaneous Localization and Mapping) is a problem that has existed for a long time in robotics and autonomous navigation. The objective of SLAM is for a robot to simultaneously figure out its position in space and map its environment. SLAM is especially useful and mandatory for robots that want to navigate autonomously. The description might make it seem like a chicken and egg problem, but numerous methods have been proposed to tackle SLAM. Before the rise in the popularity of deep learning and AI (Artificial Intelligence), most existing algorithms involved traditional hard-coded algorithms that would receive and process sensor information and convert it into some solvable sensor-agnostic problem. The challenge for these sorts of methods is having to tackle dynamic environments. The more variety in the environment, the poorer the results. Also due to the increase in computational power and the capability of deep learning-based image processing, visual SLAM has become extremely viable and maybe even preferable to traditional SLAM algorithms. In this research, a deep learning-based solution to the SLAM problem is proposed, specifically monocular visual SLAM which is solving the problem of SLAM purely with a singular camera as the input, and the model is tested on the KITTI (Karlsruhe Institute of Technology & Toyota Technological Institute) odometry dataset.
ContributorsRupaakula, Krishna Sandeep (Author) / Bansal, Ajay (Thesis advisor) / Baron, Tyler (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2023
187326-Thumbnail Image.png
Description
Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process can be particularly challenging when the website designs are experimental

Frontend development often involves the repetitive and time-consuming task of transforming a Graphical User interface (GUI) design into Frontend Code. The GUI design could either be an image or a design created on tools like Figma, Sketch, etc. This process can be particularly challenging when the website designs are experimental and undergo multiple iterations before the final version gets deployed. In such cases, developers work with the designers to make continuous changes and improve the look and feel of the website. This can lead to a lot of reworks and a poorly managed codebase that requires significant developer resources. To tackle this problem, researchers are exploring ways to automate the process of transforming image designs into functional websites instantly. This thesis explores the use of machine learning, specifically Recurrent Neural networks (RNN) to generate an intermediate code from an image design and then compile it into a React web frontend code. By utilizing this approach, designers can essentially transform an image design into a functional website, granting them creative freedom and the ability to present working prototypes to stockholders in real-time. To overcome the limitations of existing publicly available datasets, the thesis places significant emphasis on generating synthetic datasets. As part of this effort, the research proposes a novel method to double the size of the pix2code [2] dataset by incorporating additional complex HTML elements such as login forms, carousels, and cards. This approach has the potential to enhance the quality and diversity of training data available for machine learning models. Overall, the proposed approach offers a promising solution to the repetitive and time-consuming task of transforming GUI designs into frontend code.
ContributorsSingh, Ajitesh Janardan (Author) / Bansal, Ajay (Thesis advisor) / Mehlhase, Alexandra (Committee member) / Baron, Tyler (Committee member) / Arizona State University (Publisher)
Created2023