This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152757-Thumbnail Image.png
Description
Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained to the surface of the three dimensional unit sphere. Cubic IF functions subsume well-known IF functions such as linear, quadratic monomial, and cubic monomial IF functions. In addition, all nonlinear IF functions sufficiently approximated by a third order Taylor series over the unit time sequence can be represented in this space. Analog methods for generating polynomial IF waveforms are well established allowing for practical implementation in real world systems. By sufficiently constraining the search space to these waveforms of interest, alternative optimization methods such as differential evolution can be used to optimize tracking performance in a variety of radar environments. While simplified tracking models and finite waveform dictionaries have information theoretic results, continuous waveform design in high SNR, narrowband, cluttered environments is explored.
ContributorsPaul, Bryan (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
157998-Thumbnail Image.png
Description
The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components

The marked increase in the inflow of remotely sensed data from satellites have trans- formed the Earth and Space Sciences to a data rich domain creating a rich repository for domain experts to analyze. These observations shed light on a diverse array of disciplines ranging from monitoring Earth system components to planetary explo- ration by highlighting the expected trend and patterns in the data. However, the complexity of these patterns from local to global scales, coupled with the volume of this ever-growing repository necessitates advanced techniques to sequentially process the datasets to determine the underlying trends. Such techniques essentially model the observations to learn characteristic parameters of data-generating processes and highlight anomalous planetary surface observations to help domain scientists for making informed decisions. The primary challenge in defining such models arises due to the spatio-temporal variability of these processes.

This dissertation introduces models of multispectral satellite observations that sequentially learn the expected trend from the data by extracting salient features of planetary surface observations. The main objectives are to learn the temporal variability for modeling dynamic processes and to build representations of features of interest that is learned over the lifespan of an instrument. The estimated model parameters are then exploited in detecting anomalies due to changes in land surface reflectance as well as novelties in planetary surface landforms. A model switching approach is proposed that allows the selection of the best matched representation given the observations that is designed to account for rate of time-variability in land surface. The estimated parameters are exploited to design a change detector, analyze the separability of change events, and form an expert-guided representation of planetary landforms for prioritizing the retrieval of scientifically relevant observations with both onboard and post-downlink applications.
ContributorsChakraborty, Srija (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Richmond, Christ (Committee member) / Maurer, Alexander (Committee member) / Arizona State University (Publisher)
Created2019