This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 322
Filtering by

Clear all filters

151881-Thumbnail Image.png
Description
In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and

In the 1930s, with the rise of Nazism, many artists in Europe had to flee their homelands and sought refuge in the United States. Austrian composer Hanns Eisler who had risen to prominence as a significant composer during the Weimar era was among them. A Jew, an ardent Marxist and composer devoted to musical modernism, he had established himself as a writer of film music and Kampflieder, fighting songs, for the European workers' movement. After two visits of the United States in the mid-1930s, Eisler settled in America where he spent a decade (1938-1948), composed a considerable number of musical works, including important film scores, instrumental music and songs, and, in collaboration with Theodor W. Adorno, penned the influential treatise Composing for the Films. Yet despite his substantial contributions to American culture American scholarship on Eisler has remained sparse, perhaps due to his reputation as the "Karl Marx in Music." In this study I examine Eisler's American exile and argue that Eisler, through his roles as a musician and a teacher, actively sought to enrich American culture. I will present background for his exile years, a detailed overview of his American career as well as analyses and close readings of several of his American works, including three of his American film scores, Pete Roleum and His Cousins (1939), Hangmen Also Die (1943), and None But the Lonely Heart (1944), and the String Quartet (1940), Third Piano Sonata (1943), Woodbury Liederbüchlein (1941), and Hollywood Songbook (1942-7). This thesis builds upon unpublished correspondence and documents available only in special collections at the University of Southern California (USC), as well as film scores in archives at USC and the University of California, Los Angeles. It also draws on Eisler studies by such European scholars as Albrecht Betz, Jürgen Schebera, and Horst Weber, as well as on research of film music scholars Sally Bick and Claudia Gorbman. As there is little written on the particulars of Eisler's American years, this thesis presents new facts and new perspectives and aims at a better understanding of the artistic achievements of this composer.
ContributorsBoyd, Caleb (Author) / Feisst, Sabine (Thesis advisor) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152199-Thumbnail Image.png
Description
Baseball is the quintessential American game. To understand the country one must also understand the role baseball played in the nation's maturation process. Embedded in baseball's history are (among other things) the stories of America's struggles with issues of race, gender, immigration, organized labor, drug abuse, and rampant consumerism. Over

Baseball is the quintessential American game. To understand the country one must also understand the role baseball played in the nation's maturation process. Embedded in baseball's history are (among other things) the stories of America's struggles with issues of race, gender, immigration, organized labor, drug abuse, and rampant consumerism. Over the better part of two centuries, the national pastime both reflected changes to American culture and helped shape them as well. Documenting these changes and packaging them for consumption is the responsibility of the National Baseball Hall of Fame and Museum in Cooperstown, New York. Founded as a tourist attraction promoting largely patriotic values, in recent decades the Baseball Hall of Fame made a concerted effort to transform itself into a respected member of the history museum community--dedicated to displaying American history through the lens of baseball. This dissertation explores the evolution of the Baseball Hall of Fame from celebratory shrine to history museum through an analysis of public history practice within the museum. In particular, this study examines the ways the Hall both reflected and reinforced changes to American values and ideologies through the evolution of public history practice in the museum. The primary focus of this study is the museum's exhibits and analyzing what their content and presentation convey about the social climate during the various stages of the Baseball Hall of Fame's evolution. The principal resources utilized to identify these stages include promotional materials, exhibit reviews, periodicals, and photographic records, as well as interviews with past and present Hall-of-Fame staff. What this research uncovers is the story of an institution in the midst of a slow transition. Throughout the past half century, the Hall of Fame staff struggled with a variety of obstacles to change (including the museum's traditionally conservative roots, the unquestioning devotion Americans display for baseball and its mythology, and the Hall of Fame's idyllic setting in a quaint corner of small-town America) that undermined their efforts to become the type of socially relevant institution many envisioned. Contending with these challenges continues to characterize much of the museum's operations today.
ContributorsMangan, Gregory (Author) / Warren-Findley, Jannelle (Thesis advisor) / Szuter, Christine (Committee member) / Toon, Richard (Committee member) / Arizona State University (Publisher)
Created2013
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152097-Thumbnail Image.png
Description
After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection.

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.
ContributorsKrishnakumar, Padmini (Author) / Lindsay, Stuart (Thesis advisor) / He, Jin (Committee member) / Vaiana, Sara (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2013
151892-Thumbnail Image.png
Description
Museums reflect power relations in society. Centuries of tradition dictate that museum professionals through years of study have more knowledge about the past and culture than the communities they present and serve. As mausoleums of intellect, museums developed cultures that are resistant to relinquishing any authority to the public. The

Museums reflect power relations in society. Centuries of tradition dictate that museum professionals through years of study have more knowledge about the past and culture than the communities they present and serve. As mausoleums of intellect, museums developed cultures that are resistant to relinquishing any authority to the public. The long history of museums as the authority over the past led to the alienation and exclusion of many groups from museums, particular indigenous communities. Since the 1970s, many Native groups across the United States established their own museums in response to the exclusion of their voices in mainstream institutions. As establishments preserving cultural material, tradition, and history, tribal museums are recreating the meaning of "museum," presenting a model of cooperation and inclusion of community members to the museum process unprecedented in other institutions. In a changing world, many scholars and professionals call for a sharing of authority in museum spaces in order to engage the pubic in new ways, yet many cultural institutions s struggle to find a way to negotiate the traditional model of a museum while working with communities. Conversely, the practice of power sharing present in Iroquois (Haudenosaunee) tradition shaped a museum culture capable of collaboration with their community. Focusing on the Akwesasne Museum as a case study, this dissertation argues that the ability for a museum to share authority of the past with its community is dependent on the history and framework of the culture of the institution, its recognition of the importance of place to informing the museum, and the use of cultural symbols to encourage collaboration. At its core, this dissertation concerns issues of authority, power, and ownership over the past in museum spaces.
ContributorsHeisinger, Meaghan (Author) / Fixico, Donald (Thesis advisor) / Szuter, Christine (Committee member) / Warren-Findley, Jannelle (Committee member) / Arizona State University (Publisher)
Created2013
151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
151743-Thumbnail Image.png
Description
The Kootenai River landscape of southwestern British Columbia, northwestern Montana and the very northern tip of Idaho helped unify the indigenous Ktunaxa tribe and guided tribal lifestyles for centuries. However, the Ktunaxa bands' intimate connection with the river underwent a radical transformation during the nineteenth century. This study analyzes how

The Kootenai River landscape of southwestern British Columbia, northwestern Montana and the very northern tip of Idaho helped unify the indigenous Ktunaxa tribe and guided tribal lifestyles for centuries. However, the Ktunaxa bands' intimate connection with the river underwent a radical transformation during the nineteenth century. This study analyzes how the Ktunaxa relationship with the Kootenai River faced challenges presented by a new understanding of the meaning of landscape introduced by outside groups who began to ply the river's waters in the early 1800s. As the decades passed, the establishment of novel boundaries, including the new U.S.-Canadian border and reserve/reservation delineations, forever altered Ktunaxa interaction with the land. The very meaning of the river for the Ktunaxa as a source of subsistence, avenue of transportation and foundation of spiritual identity experienced similar modifications. In a matter of decades, authoritarian lines on foreign maps imposed a concept of landscape far removed from the tribe's relatively fluid and shifting understanding of boundary lines represented by the river at the heart of the Ktunaxa homeland. This thesis draws on early ethnographic work with the Ktunaxa tribe in addition to the journals of early traders and missionaries in the Kootenai region to describe how the Ktunaxa way of life transformed during the nineteenth century. The works of anthropologist Keith Basso and environmental philosopher David Abram are used to develop an understanding of the powerful implications of the separation of the Ktunaxa people from the landscape so essential to tribal identity and lifestyle. Two different understandings of boundaries and the human relationship with the natural world clashed along the Kootenai River in the 1800s, eventually leading to the separation of the valley's indigenous inhabitants from each other and from the land itself. What water had once connected, lines on maps now divided, redefining this extensive landscape and its meaning for the Ktunaxa people. However, throughout decades of dominance of the Western mapmakers' worldview and in spite of the overwhelming influence of this Euro-American approach to the environment, members of the Ktunaxa tribe have been able to maintain much of their traditional culture.
ContributorsColeman, Robert (Author) / Warren-Findley, Jannelle (Thesis advisor) / Szuter, Christine (Committee member) / Fixico, Donald (Committee member) / Arizona State University (Publisher)
Created2013
151745-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states,

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
ContributorsJuday, Reid (Author) / Ponce, Fernando A. (Thesis advisor) / Drucker, Jeff (Committee member) / Mccartney, Martha R (Committee member) / Menéndez, Jose (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151952-Thumbnail Image.png
Description
Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse.

Microwave dielectrics are widely used to make resonators and filters in telecommunication systems. The production of thin films with high dielectric constant and low loss could potentially enable a marked reduction in the size of devices and systems. However, studies of these materials in thin film form are very sparse. In this research, experiments were carried out on practical high-performance dielectrics including ZrTiO4-ZnNb2O6 (ZTZN) and Ba(Co,Zn)1/3Nb2/3O3 (BCZN) with high dielectric constant and low loss tangent. Thin films were deposited by laser ablation on various substrates, with a systematical study of growth conditions like substrate temperature, oxygen pressure and annealing to optimize the film quality, and the compositional, microstructural, optical and electric properties were characterized. The deposited ZTZN films were randomly oriented polycrystalline on Si substrate and textured on MgO substrate with a tetragonal lattice change at elevated temperature. The BCZN films deposited on MgO substrate showed superior film quality relative to that on other substrates, which grow epitaxially with an orientation of (001) // MgO (001) and (100) // MgO (100) when substrate temperature was above 500 oC. In-situ annealing at growth temperature in 200 mTorr oxygen pressure was found to enhance the quality of the films, reducing the peak width of the X-ray Diffraction (XRD) rocking curve to 0.53o and the χmin of channeling Rutherford Backscattering Spectrometry (RBS) to 8.8% when grown at 800oC. Atomic Force Microscopy (AFM) was used to study the topography and found a monotonic decrease in the surface roughness when the growth temperature increased. Optical absorption and transmission measurements were used to determine the energy bandgap and the refractive index respectively. A low-frequency dielectric constant of 34 was measured using a planar interdigital measurement structure. The resistivity of the film is ~3×1010 ohm·cm at room temperature and has an activation energy of thermal activated current of 0.66 eV.
ContributorsLi, You (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013