This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description
There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not consider the use of twisty puzzles in developing language proficiency.

There exists extensive research on the use of twisty puzzles, such as the Rubik's Cube, in educational contexts to assist in developing critical thinking skills and in teaching abstract concepts, such as group theory. However, the existing research does not consider the use of twisty puzzles in developing language proficiency. Furthermore, there remain methodological issues in integrating standard twisty puzzles into a class curriculum due to the ease with which erroneous cube twists occur, leading to a puzzle scramble that deviates from the intended teaching goal. To address these issues, an extensive examination of the "smart cube" market took place in order to determine whether a device that virtualizes twisty puzzles while maintaining the intuitive tactility of manipulating such puzzles can be employed both to fill the language education void and to mitigate the potential frustration experienced by students who unintentionally scramble a puzzle due to executing the wrong moves. This examination revealed the presence of Bluetooth smart cubes, which are capable of interfacing with a companion web or mobile application that visualizes and reacts to puzzle manipulations. This examination also revealed the presence of a device called the WOWCube, which is a 2x2x2 smart cube entertainment system that has 24 Liquid Crystal Display (LCD) screens, one for each face's square, enabling better integration of the application with the puzzle hardware. Developing applications both for the Bluetooth smart cube using React Native and for the WOWCube demonstrated the higher feasibility of developing with the WOWCube due to its streamlined development kit as well as its ability to tie the application to the device hardware, enhancing the tactile immersion of the players with the application itself. Using the WOWCube, a word puzzle game featuring three game modes was implemented to assist in teaching players English vocabulary. Due to its incorporation of features that enable dynamic puzzle generation and resetting, players who participated in a user survey found that the game was compelling and that it exercised their critical thinking skills. This demonstrates the feasibility of smart cube applications in both critical thinking and language skills.
ContributorsHreshchyshyn, Jacob (Author) / Bansal, Ajay (Thesis advisor) / Mehlhase, Alexandra (Committee member) / Baron, Tyler (Committee member) / Arizona State University (Publisher)
Created2023
161463-Thumbnail Image.png
Description
Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content to its players. While this approach is good for developing

Serious or educational games have been a subject of research for a long time. They usually have game mechanics, game content, and content assessment all tied together to make a specialized game intended to impart learning of the associated content to its players. While this approach is good for developing games for teaching highly specific topics, it consumes a lot of time and money. Being able to re-use the same mechanics and assessment for creating games that teach different contents would lead to a lot of savings in terms of time and money. The Content Agnostic Game Engineering (CAGE) Architecture mitigates the problem by disengaging the content from game mechanics. Moreover, the content assessment in games is often quite explicit in the way that it disturbs the flow of the players and thus hampers the learning process, as it is not integrated into the game flow. Stealth assessment helps to alleviate this problem by keeping the player engagement intact while assessing them at the same time. Integrating stealth assessment into the CAGE framework in a content-agnostic way will increase its usability and further decrease in game and assessment development time and cost. This research presents an evaluation of the learning outcomes in content-agnostic game-based assessment developed using the CAGE framework.
ContributorsVerma, Vipin (Author) / Craig, Scotty D (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Amresh, Ashish (Committee member) / Baron, Tyler (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2021