This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171733-Thumbnail Image.png
Description
Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design

Multibody Dynamic (MBD) models are important tools in motion analysis and are used to represent and accurately predict the behavior of systems in the real-world. These models have a range of applications, including the stowage and deployment of flexible deployables on spacecraft, the dynamic response of vehicles in automotive design and crash testing, and mapping interactions of the human body. An accurate model can aid in the design of a system to ensure the system is effective and meets specified performance criteria when built. A model may have many design parameters, such as geometrical constraints and component mechanical properties, or controller parameters if the system uses an external controller. Varying these parameters and rerunning analyses by hand to find an ideal design can be time consuming for models that take hours or days to run. To reduce the amount of time required to find a set of parameters that produces a desired performance, optimization is necessary. Many papers have discussed methods for optimizing rigid and flexible MBD models, and separately their controllers, using both gradient-based and gradient-free algorithms. However, these optimization methods have not been used to optimize full-scale MBD models and their controllers simultaneously. This thesis presents a method for co-optimizing an MBD model and controller that allows for the flexibility to find model and controller-based solutions for systems with tightly coupled parameters. Specifically, the optimization is performed on a quadrotor drone MBD model undergoing disturbance from a slung load and its position controller to meet specified position error performance criteria. A gradient-free optimization algorithm and multiple objective approach is used due to the many local optima from the tradeoffs between the model and controller parameters. The thesis uses nine different quadrotor cases with three different position error formulations. The results are used to determine the effectiveness of the optimization and the ability to converge on a single optimal design. After reviewing the results, the optimization limitations are discussed as well as the ability to transition the optimization to work with different MBD models and their controllers.
ContributorsGambatese, Marcus (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Inoyama, Daisaku (Committee member) / Arizona State University (Publisher)
Created2022
157851-Thumbnail Image.png
Description
Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations.

Vehicles traverse granular media through complex reactions with large numbers of small particles. Many approaches rely on empirical trends derived from wheeled vehicles in well-characterized media. However, the environments of numerous bodies such as Mars or the moon are primarily composed of fines called regolith which require different design considerations. This dissertation discusses research aimed at understanding the role and function of empirical, computational, and theoretical granular physics approaches as they apply to helical geometries, their envelope of applicability, and the development of new laws. First, a static Archimedes screw submerged in granular material (glass beads) is analyzed using two methods: Granular Resistive Force Theory (RFT), an empirically derived set of equations based on fluid dynamic superposition principles, and Discrete element method (DEM) simulations, a particle modeling software. Dynamic experiments further confirm the computational method with multi-body dynamics (MBD)-DEM co-simulations. Granular Scaling Laws (GSL), a set of physics relationships based on non-dimensional analysis, are utilized for the gravity-modified environments. A testing chamber to contain a lunar analogue, BP-1, is developed and built. An investigation of straight and helical grousered wheels in both silica sand and BP-1 is performed to examine general GSL applicability for lunar purposes. Mechanical power draw and velocity prediction by GSL show non-trivial but predictable deviation. BP-1 properties are characterized and applied to an MBD-DEM environment for the first time. MBD-DEM simulation results between Earth gravity and lunar gravity show good agreement with theoretical predictions for both power and velocity. The experimental deviation is further investigated and found to have a mass-dependant component driven by granular sinkage and engagement. Finally, a robust set of helical granular scaling laws (HGSL) are derived. The granular dynamics scaling of three-dimensional screw-driven mobility is reduced to a similar theory as wheeled scaling laws, provided the screw is radially continuous. The new laws are validated in BP-1 with results showing very close agreement to predictions. A gravity-variant version of these laws is validated with MBD-DEM simulations. The results of the dissertation suggest GSL, HGSL, and MBD-DEM give reasonable approximations for use in lunar environments to predict rover mobility given adequate granular engagement.
ContributorsThoesen, Andrew Lawrence (Author) / Marvi, Hamidreza (Thesis advisor) / Berman, Spring (Committee member) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Klesh, Andrew (Committee member) / Arizona State University (Publisher)
Created2019