This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151153-Thumbnail Image.png
Description
Due to the lack of understanding of soil thermal behavior, rules-of-thumb and generalized procedures are typically used to guide building professionals in the design of ground coupled heat pump systems. This is especially true when sizing the ground heat exchanger (GHE) loop. Unfortunately, these generalized procedures often encourage building engineers

Due to the lack of understanding of soil thermal behavior, rules-of-thumb and generalized procedures are typically used to guide building professionals in the design of ground coupled heat pump systems. This is especially true when sizing the ground heat exchanger (GHE) loop. Unfortunately, these generalized procedures often encourage building engineers to adopt a conservative design approach resulting in the gross over-sizing of the GHE, thus drastically increasing their installation cost. This conservative design approach is particularly prevalent for buildings located in hot and arid climates, where the soils are often granular and where the water table tends to exist deep below the soil surface. These adverse soil conditions reduce the heat dissipation efficiency of the GHE and have hindered the adoption of ground coupled heat pump systems in such climates. During cooling mode operation, heat is extracted from the building and rejected into the ground via the GHE. Prolonged heat dissipation into the ground can result in a coupled flow of both heat and moisture, causing the moisture to migrate away from the GHE piping. This coupled flow phenomenon causes the soil near the GHE to dry out and results in the degradation of the GHE heat dissipation capacity. Although relatively simple techniques of backfilling the GHE have been used in practice to mitigate such coupled effects, methods of improving the thermal behavior of the backfill region around the GHE, especially in horizontal systems, have not been extensively studied. This thesis presents an experimental study of heat dissipation from a horizontal GHE, buried in two backfill materials: (1) dry sand, and (2) wax-sand composite mixture. The HYDRUS software was then used to numerically model the temperature profiles associated with the aforementioned backfill conditions, and the influence of the contact resistance at the GHE-backfill interface was studied. The modeling strategy developed in HYDRUS was proven to be adequate in predicting the thermal performance of GHE buried in dry sand. However, when predicting the GHE heat dissipation in the wax-sand backfill, significant discrepancies between model prediction and experimental results still exist even after calibrating the model by including a term for the contact resistance. Overall, the thermal properties of the backfill were determined to be a key determinant of the GHE heat dissipation capacity. In particular, the wax-sand backfill was estimated to dissipate 50-60% more heat than dry sand backfill.
ContributorsDAngelo, Kurtis (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
154997-Thumbnail Image.png
Description
As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment.

Significant hardening and degradation parameters such as stiffness, crack spacing, crack width, localized zone size are obtained from tensile tests using digital image correlation (DIC) technique. A tension stiffening model is used to simulate the tensile response that addresses the cracking and localization mechanisms. The model is also modified to simulate the sequential cracking in joint-free slabs on grade reinforced by steel fibers, where the lateral stiffness of slab and grade interface and stress-crack width response are the most important model parameters.

Parametric tensile and compressive material models are used to formulate generalized analytical solutions for flexural behaviors of hybrid reinforced concrete (HRC) that contains both rebars and fibers. Design recommendations on moment capacity, minimum reinforcement ratio etc. are obtained using analytical equations. The role of fiber in reducing the amount of conventional reinforcement is revealed. The approach is extended to T-sections and used to model Ultra High Performance Concrete (UHPC) beams and girders.

The analytical models are extended to structural members subjected to combined axial and bending actions. Analytical equations to address the P-M diagrams are derived. Closed-form equations that generate the interaction diagram of HRC section are presented which may be used in the design of multiple types of applications.

The theoretical models are verified by independent experimental results from literature. Reliability analysis using Monte Carlo simulation (MCS) is conducted for few design problems on ultimate state design. The proposed methodologies enable one to simulate the experiments to obtain material parameters and design structural members using generalized formulations.
ContributorsYao, Yiming (Author) / Mobasher, Barzin (Thesis advisor) / Underwood, Benjamin (Committee member) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016