This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171589-Thumbnail Image.png
Description
Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si

Interdigitated back contact (IBC) solar cells have achieved the highest single junction silicon wafer-based solar cell power conversion efficiencies reported to date. This thesis is about the fabrication of a high-efficiency silicon heterojunction IBC solar cell for potential use as the bottom cell for a 3-terminal lattice-matched dilute-nitride Ga (In)NP(As)/Si monolithic tandem solar cell. An effective fabrication process has been developed and the process challenges related to open circuit voltage (Voc), series resistance (Rs), and fill factor (FF) are experimentally analyzed. While wet etching, the sample lost the initial passivation, and by changing the etchant solution and passivation process, the voltage at maximum power recovered to an initial value of over 710 mV before metallization. The factors reducing the series resistance loss in IBC cells were also studied. One of these factors was the Indium Tin Oxide (ITO) sputtering parameters, which impact the conductivity of the ITO layer and transport across the a-Si:H/ITO interface. For the standard recipe, the chamber pressure was 3.5 mTorr with no oxygen partial pressure, and the thickness of the ITO layer in contact with the a-Si:H layers, was optimized to 150 nm. The patterning method for the metal contacts and final annealing also change the contact resistance of the base and emitter stack layers. The final annealing step is necessary to recover the sputtering damage; however, the higher the annealing time the higher the final IBC series resistance. The best efficiency achieved was 19.3% (Jsc = 37 mA/cm2, Voc = 691 mV, FF = 71.7%) on 200 µm thick 1-15 Ω-cm n-type CZ C-Si with a designated area of 4 cm2.
ContributorsMoeini Rizi, Mansoure (Author) / Goodnick, Stephen (Thesis advisor) / Honsberg, Christina (Committee member) / Goryll, Michael (Committee member) / Smith, David (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2022
156824-Thumbnail Image.png
Description
Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures.

As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell.

This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions.
ContributorsBernardini, Simone (Author) / Bertoni, Mariana I (Thesis advisor) / Coletti, Gianluca (Committee member) / Bowden, Stuart (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018