This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 491
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149727-Thumbnail Image.png
Description
This dissertation consists of two essays. The first measures the degree to which schooling accounts for differences in industry value added per worker. Using a sample of 107 economies and seven industries, the paper considers the patterns in the education levels of various industries and their relative value added per

This dissertation consists of two essays. The first measures the degree to which schooling accounts for differences in industry value added per worker. Using a sample of 107 economies and seven industries, the paper considers the patterns in the education levels of various industries and their relative value added per worker. Agriculture has notably less schooling and is less productive than other sectors, while a group of services including financial services, education and health care has higher rates of schooling and higher value added per worker. The essay finds that in the case of these specific industries education is important in explaining sector differences, and the role of education all other industries are less defined. The second essay provides theory to investigate the relationship between agriculture and schooling. During structural transformation, workers shift from the agriculture sector with relatively low schooling to other sectors which have more schooling. This essay explores to what extent changes in the costs of acquiring schooling drive structural transformation using a multi-sector growth model which includes a schooling choice. The model is disciplined using cross country data on sector of employment and schooling constructed from the IPUM International census collection. Counterfactual exercises are used to determine how much structural transformation is accounted for by changes in the cost of acquiring schooling. These changes account for small shares of structural transformation in all economies with a median near zero.
ContributorsSchreck, Paul (Author) / Herrendorf, Berthold (Committee member) / Lagakos, David (Committee member) / Schoellman, Todd (Committee member) / Arizona State University (Publisher)
Created2011
149778-Thumbnail Image.png
Description
Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power down and step back in time technologically when they enter

Federal education policies call for school district leaders to promote classroom technology integration to prepare students with 21st century skills. However, schools are struggling to integrate technology effectively, with students often reporting that they feel like they need to power down and step back in time technologically when they enter classrooms. The lack of meaningful technology use in classrooms indicates a need for increased teacher preparation. The purpose of this study was to investigate the impact a coaching model of professional development had on school administrators` abilities to increase middle school teachers` technology integration in their classrooms. This study attempted to coach administrators to develop and articulate a vision, cultivate a culture, and model instruction relative to the meaningful use of instructional technology. The study occurred in a middle school. Data for this case study were collected via administrator interviews, the Principal`s Computer Technology Survey, structured observations using the Higher Order Thinking, Engaged Learning, Authentic Learning, Technology Use protocol, field notes, the Technology Integration Matrix, teacher interviews, and a research log. Findings concluded that cultivating change in an organization is a complex process that requires commitment over an extended period of time. The meaningful use of instructional technology remained minimal at the school during fall 2010. My actions as a change agent informed the school`s administrators about the role meaningful use of technology can play in instruction. Limited professional development, administrative vision, and expectations minimized the teachers` meaningful use of instructional technology; competing priorities and limited time minimized the administrators` efforts to improve the meaningful use of instructional technology. Realizing that technology proficient teachers contribute to student success with technology, it may be wise for administrators to incorporate technology-enriched professional development and exercise their leadership abilities to promote meaningful technology use in classrooms.
ContributorsRobertson, Kristen (Author) / Moore, David (Thesis advisor) / Cheatham, Greg (Committee member) / Catalano, Ruth (Committee member) / Arizona State University (Publisher)
Created2011
149641-Thumbnail Image.png
Description
This study utilized symbolic interaction as a framework to examine the impact of mobility on four veteran elementary general music teachers' identities, roles, and perceptions of role support. Previous research has focused on teacher identity formation among preservice and novice teachers; veteran teachers are less frequently represented in the

This study utilized symbolic interaction as a framework to examine the impact of mobility on four veteran elementary general music teachers' identities, roles, and perceptions of role support. Previous research has focused on teacher identity formation among preservice and novice teachers; veteran teachers are less frequently represented in the literature. Teacher mobility research has focused on student achievement, teachers' reasons for moving, and teacher attrition. The impact of mobility on veteran teachers' identities, roles, and perceptions of role support has yet to be considered. A multiple case design was employed for this study. The criteria for purposeful selection of the participants were elementary general music teachers who had taught for at least ten years, who had changed teaching contracts and taught in at least two different schools, and who were viewed as effective music educators by fine arts coordinators. Data were collected over a period of eight months through semi-structured interviews, email correspondence, observations, review of videotapes of the participants' teaching in previous schools, and collection of artifacts. Data were analyzed within and across cases. The cross-case analysis revealed themes within the categories of identity, role, and role support for the participants. The findings suggest that the participants perceived their music teacher roles as multi-dimensional. They claimed their core identities remained stable over time; however, shifts in teacher identity occurred throughout their years as teachers. The participants asserted that mobility at the start of their careers had a positive impact because they each were challenged to solidify their own teacher identities and music teacher roles in varied school contexts. Mobility negatively impacted role and teacher practices during times when the participants adjusted to new school climates and role expectations. Role support varied depending upon school context, and the participants discovered active involvement in the school community was an effective means of seeking and acquiring role support. Reflection experiences in music teacher preparation programs, as well as mentoring and professional development geared toward teacher identity formation and role maturation, may assist teachers in matching their desired school context with their teacher identities and perceptions of the music teacher role.
ContributorsGray, Lori F (Author) / Stauffer, Sandra (Committee member) / Schmidt, Margaret (Committee member) / Sullivan, Jill (Committee member) / Bush, Jeffrey (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
150381-Thumbnail Image.png
Description
One of the critical imperatives for the development of inclusive school systems is the capacity to nurture and develop teachers who have the skills, critical sensibilities, and the contextual awareness to provide quality educational access, participation, and outcomes for all students; however, research on teacher learning for inclusive education has

One of the critical imperatives for the development of inclusive school systems is the capacity to nurture and develop teachers who have the skills, critical sensibilities, and the contextual awareness to provide quality educational access, participation, and outcomes for all students; however, research on teacher learning for inclusive education has not yet generated a robust body of knowledge to understand how teachers become inclusive teachers in institutions where exclusion is historical and ubiquitous. Drawing from socio-cultural theory, this study aimed to fill this gap through an examination of teacher learning for inclusive education in an urban professional learning school. In particular, I aimed to answer the following two questions: (a) What social discourses are present in a professional learning school for inclusive education?, and (b) How do teachers appropriate these social discourses in situated practice? I used analytical tools from Critical Discourse Analysis (CDA) and Grounded Theory to analyze entry and exit interviews with teacher residents, principals, site professors, and video-stimulated interviews with teacher residents, observations of classroom practices and thesis seminars, and school documents. I found two social discourses that I called discourses of professionalism, as they offered teachers a particular combination of tools, aiming to universalize certain tools for doing and thinking that signaled what it meant to be a professional teacher in the participating schools. These were the Total Quality Management like discourse (TQM-like) and the Inclusive Education-like discourse. The former was dominant in the schools, whereas the latter was dominant in the university Master's program. These discourses overlapped in teachers' classrooms practices, creating tensions. To understand how these tensions were resolved, this study introduced the concept of curating, a kind of heuristic development that pertains particularly to the work achieved in boundary practices in which individuals must claim multiple memberships by appropriating the discourses and their particular tool kits of more than one community of practice. This study provides recommendations for future research and the engineering of professional development efforts for inclusive education.
ContributorsWaitoller, Federico R. (Author) / Artiles, Alfredo J. (Thesis advisor) / Kozleski, Elizabeth B. (Committee member) / Gee, James P (Committee member) / Arizona State University (Publisher)
Created2011