This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151540-Thumbnail Image.png
Description
The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with

The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy mar-ket, considered to be an effective solution to promote energy efficiency. In the urban en-vironment, the electricity, water and natural gas distribution networks are becoming in-creasingly interconnected with the growing penetration of the CHP-based DG. Subse-quently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and sit-ing for a larger test bed with the given information of energy infrastructures. In this con-text, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The pro-posed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation per-formances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electrici-ty, gas, and water system models were developed individually and coupled by the devel-oped CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical output and recovered thermal output, which are affected by multiple factors and thus analyzed in different case studies. The results indicate that the designed typical gas system is capable of supplying sufficient natural gas for the DG normal operation, while the present water system cannot support the complete recovery of the exhaust heat from the DG units.
ContributorsZhang, Xianjun (Author) / Karady, George G. (Thesis advisor) / Ariaratnam, Samuel T. (Committee member) / Holbert, Keith E. (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
153717-Thumbnail Image.png
Description
This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources

This thesis addresses the design and control of three phase inverters. Such inverters are

used to produce three-phase sinusoidal voltages and currents from a DC source. They

are critical for injecting power from renewable energy sources into the grid. This is

especially true since many of these sources of energy are DC sources (e.g. solar

photovoltaic) or need to be stored in DC batteries because they are intermittent (e.g. wind

and solar). Two classes of inverters are examined in this thesis. A control-centric design

procedure is presented for each class. The first class of inverters is simple in that they

consist of three decoupled subsystems. Such inverters are characterized by no mutual

inductance between the three phases. As such, no multivariable coupling is present and

decentralized single-input single-output (SISO) control theory suffices to generate

acceptable control designs. For this class of inverters several families of controllers are

addressed in order to examine command following as well as input disturbance and noise

attenuation specifications. The goal here is to illuminate fundamental tradeoffs. Such

tradeoffs include an improvement in the in-band command following and output

disturbance attenuation versus a deterioration in out-of-band noise attenuation.

A fundamental deficiency associated with such inverters is their large size. This can be

remedied by designing a smaller core. This naturally leads to the second class of inverters

considered in this work. These inverters are characterized by significant mutual

inductances and multivariable coupling. As such, SISO control theory is generally not

adequate and multiple-input multiple-output (MIMO) theory becomes essential for

controlling these inverters.
ContributorsSarkar, Aratrik (Author) / Rodriguez, Armando A. (Thesis advisor) / Si, Jennie (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2015