This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

193400-Thumbnail Image.png
Description
Power amplifiers and tuneable matching networks for plasma generation systems arebeing continuously advanced, and recent innovations have shown tremendous improvements in their size, efficiency, and capability. These improvements must ultimately be validated on a live plasma chamber, but this is costly and time-consuming, and debugging errors or failures is a challenge owing to

Power amplifiers and tuneable matching networks for plasma generation systems arebeing continuously advanced, and recent innovations have shown tremendous improvements in their size, efficiency, and capability. These improvements must ultimately be validated on a live plasma chamber, but this is costly and time-consuming, and debugging errors or failures is a challenge owing to the highly dynamic nature of the plasma and the experimental prototype nature of the advancements. This work addresses this challenge by developing a reactive load emulation system that can mimic the inductive reactance of a live plasma chamber. This includes a study of the saturation characteristics of low-permeability, high-frequency materials, demonstration of the suitability of this method for plasma emulation, and the design of an inductor array platform which verifies the approach.
ContributorsTagare, Darshan Ravindra (Author) / Ranjram, Mike (Thesis advisor) / Mallik, Ayan (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2024