This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

156452-Thumbnail Image.png
Description
Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses.

Guided by Tinto’s Theory of College Student Departure, I conducted a set of five studies to identify factors that influence students’ social integration in college science active learning classes. These studies were conducted in large-enrollment college science courses and some were specifically conducted in undergraduate active learning biology courses. Using qualitative and quantitative methodologies, I identified how students’ identities, such as their gender and LGBTQIA identity, and students’ perceptions of their own intelligence influence their experience in active learning science classes and consequently their social integration in college. I also determined factors of active learning classrooms and instructor behaviors that can affect whether students experience positive or negative social integration in the context of active learning. I found that students’ hidden identities, such as the LGBTQIA identity, are more relevant in active learning classes where students work together and that the increased relevance of one’s identity can have a positive and negative impact on their social integration. I also found that students’ identities can predict their academic self-concept, or their perception of their intelligence as it compares to others’ intelligence in biology, which in turn predicts their participation in small group-discussion. While many students express a fear of negative evaluation, or dread being evaluated negatively by others when speaking out in active learning classes, I identified that how instructors structure group work can cause students to feel more or less integrated into the college science classroom. Lastly, I identified tools that instructors can use, such as name tents and humor, which can positive affect students’ social integration into the college science classroom. In sum, I highlight inequities in students’ experiences in active learning science classrooms and the mechanisms that underlie some of these inequities. I hope this work can be used to create more inclusive undergraduate active learning science courses.
ContributorsCooper, Katelyn M (Author) / Brownell, Sara E (Thesis advisor) / Stout, Valerie (Committee member) / Collins, James (Committee member) / Orchinik, Miles (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2018
187632-Thumbnail Image.png
Description
Integrating agent-based models (ABMs) has been a popular approach for teaching emergent science concepts. However, students continue to find it difficult to explain the emergent process of natural selection. This study adopted an ontological framework–the Pattern, Agents, Interactions, Relations, and Causality (PAIR-C)–to guide the design of learning modules. This pre-posttest

Integrating agent-based models (ABMs) has been a popular approach for teaching emergent science concepts. However, students continue to find it difficult to explain the emergent process of natural selection. This study adopted an ontological framework–the Pattern, Agents, Interactions, Relations, and Causality (PAIR-C)–to guide the design of learning modules. This pre-posttest experimental study examines the effects of the PAIR-C module versus the Regular module on fostering students’ deep understanding of natural selection. Results show that students in the PAIR-C intervention group performed better in answering deep questions assessing the understanding of inter-level causal relationships than those in the Regular control group. Although students in both groups did not show significantly improved abilities in explaining the natural selection process for other contexts or significant differences in their abilities to explain other emergent phenomena, students in the intervention group demonstrated system-thinking perspectives and fewer misconceptions in their expressions compared to the control group. A close analysis of student misconceptions consolidates that the intervention group demonstrated drastically fewer categories and numbers of misconceptions while those in the control group did not show such drastic changes before and after the study. To precisely address misconceptions and further improve students’ learning outcomes, Epistemic Network Analysis was adopted to capture students’ misconception characteristics by examining the co-occurrences of different misconception categories as well as the relationship between misconceptions and PAIR-C features. The results of student learning outcomes and misconception characteristics collectively provide directions for improving the instructional design of the PAIR-C module. Furthermore, findings on student engagement levels during learning can also inform future design efforts. Overall, this project sheds light on applying an innovative framework to designing effective learning modules to teach emergent science concepts.
ContributorsSu, Man (Author) / Chi, Michelene (Thesis advisor) / Nelson, Brian (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
168510-Thumbnail Image.png
Description
Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to

Innovations in undergraduate education have increased the prevalence of active learning courses, online education, and student engagement in the high-impact practice of undergraduate research, however it is unknown whether students with disabilities are able to engage in these innovative learning environments to the same extent that they are able to engage in more traditional learning environments. Universities, disability resource centers, and instructors are mandated to provide accommodations to students with disabilities for the purposes of prohibiting discrimination and ensuring equal access to opportunities for individuals with disabilities. Are accommodations being adapted and created for these new types of learning environments? This dissertation reports findings from four studies about the experiences of students with disabilities in these three learning environments, specifically examining the challenges students with disabilities encounter and the emerging recommendations for more effective accommodations. I find that students with disabilities experience challenges in each of these learning environments and that the current suite of accommodations are not sufficient for students with disabilities. I argue that institutions need to consider modifying student accommodations and the process for obtaining them to better support students with disabilities in these evolving learning environments. I also provide recommendations for the ways in which undergraduate science education can be made more accessible and inclusive of students with disabilities.
ContributorsGin, Logan Eugene (Author) / Brownell, Sara E. (Thesis advisor) / Cooper, Katelyn M. (Thesis advisor) / Collins, James P. (Committee member) / Stout, Valerie (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2021