This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 18
Filtering by

Clear all filters

152154-Thumbnail Image.png
Description
As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell

As crystalline silicon solar cells continue to get thinner, the recombination of carriers at the surfaces of the cell plays an ever-important role in controlling the cell efficiency. One tool to minimize surface recombination is field effect passivation from the charges present in the thin films applied on the cell surfaces. The focus of this work is to understand the properties of charges present in the SiNx films and then to develop a mechanism to manipulate the polarity of charges to either negative or positive based on the end-application. Specific silicon-nitrogen dangling bonds (·Si-N), known as K center defects, are the primary charge trapping defects present in the SiNx films. A custom built corona charging tool was used to externally inject positive or negative charges in the SiNx film. Detailed Capacitance-Voltage (C-V) measurements taken on corona charged SiNx samples confirmed the presence of a net positive or negative charge density, as high as +/- 8 x 1012 cm-2, present in the SiNx film. High-energy (~ 4.9 eV) UV radiation was used to control and neutralize the charges in the SiNx films. Electron-Spin-Resonance (ESR) technique was used to detect and quantify the density of neutral K0 defects that are paramagnetically active. The density of the neutral K0 defects increased after UV treatment and decreased after high temperature annealing and charging treatments. Etch-back C-V measurements on SiNx films showed that the K centers are spread throughout the bulk of the SiNx film and not just near the SiNx-Si interface. It was also shown that the negative injected charges in the SiNx film were stable and present even after 1 year under indoor room-temperature conditions. Lastly, a stack of SiO2/SiNx dielectric layers applicable to standard commercial solar cells was developed using a low temperature (< 400 °C) PECVD process. Excellent surface passivation on FZ and CZ Si substrates for both n- and p-type samples was achieved by manipulating and controlling the charge in SiNx films.
ContributorsSharma, Vivek (Author) / Bowden, Stuart (Thesis advisor) / Schroder, Dieter (Committee member) / Honsberg, Christiana (Committee member) / Roedel, Ronald (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2013
Description
This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that

This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that will show the user how to take advantage of the resources present in this library. The results will show how in combination with other Python libraries (Matplotlib), this library becomes a powerful tool for anyone involved in solar power.
ContributorsReguera, Pedro (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2018
156761-Thumbnail Image.png
Description
The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent

The objective of this thesis is to achieve a detailed understanding of the loss mechanisms in SHJ solar cells. The working principles of these cells and what affects the cell operation, e.g. the IV characteristics at the maximum power point (MPP) and the correspondingly ll factor (FF) are investigated. Dierent loss sources are analyzed separately, and the weight of each in the total loss at the MPP are evaluated. The total series resistance is measured and then compared with the value obtained through summation over each of its components. In other words, series resistance losses due to recombination, vertical and lateral carrier transport, metalization, etc, are individually evaluated, and then by adding all these components together, the total loss is calculated. The concept of ll factor and its direct dependence on the loss mechanisms at the MPP of the device is explained, and its sensitivity to nearly every processing step of the cell fabrication is investigated. This analysis provides a focus lens to identify the main source of losses in SHJ solar cells and pave the path for further improvements in cell efficiency.

In this thesis, we provide a detailed understanding of the FF concept; we explain how it can be directly measured; how it can be calculated and what expressions can better approximate its value and under what operating conditions. The relation between FF and cell operating condition at the MPP is investigated. We separately analyzed the main FF sources of losses including recombination, sheet resistance, contact resistance and metalization. We study FF loss due to recombination and its separate components which include the Augur, radiative and SRH recombination is investigated. We study FF loss due to contact resistance and its separate components which include the contact resistance of dierent interfaces, e.g. between the intrinsic and doped a-Si layers, TCO and a-Si layers. We also study FF loss due to lateral transport and its components that including the TCO sheet resistance, the nger and the busbars resistances.
ContributorsLeilaeioun, Mohammadmehdi (Ashling) (Author) / Goodnick, Stephen (Thesis advisor) / Goryll, Michael (Thesis advisor) / Bertoni, Mariana (Committee member) / Bowden, Stuart (Committee member) / Stuckelberger, Michael (Committee member) / Arizona State University (Publisher)
Created2018
156609-Thumbnail Image.png
Description
Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts

Achieving high efficiency in solar cells requires optimal photovoltaics materials for light absorption and as with any electrical device—high-quality contacts. Essentially, the contacts separate the charge carriers—holes at one terminal and electrons at the other—extracting them to an external circuit. For this purpose, the development of passivating and carrier-selective contacts that enable low interface defect density and efficient carrier transport is critical for making high-efficiency solar cells. The recent record-efficiency n-type silicon cells with hydrogenated amorphous silicon (a-Si:H) contacts have demonstrated the usefulness of passivating and carrier-selective contacts. However, the use of a-Si:H contacts should not be limited in just n-type silicon cells.

In the present work, a-Si:H contacts for crystalline silicon and cadmium telluride (CdTe) solar cells are developed. First, hydrogen-plasma-processsed a-Si:H contacts are used in n-type Czochralski silicon cell fabrication. Hydrogen plasma treatment is used to increase the Si-H bond density of a-Si:H films and decrease the dangling bond density at the interface, which leads to better interface passivation and device performance, and wider temperature-processing window of n-type silicon cells under full spectrum (300–1200 nm) illumination. In addition, thickness-varied a-Si:H contacts are studied for n-type silicon cells under the infrared spectrum (700–1200 nm) illumination, which are prepared for silicon-based tandem applications.

Second, the a-Si:H contacts are applied to commercial-grade p-type silicon cells, which have much lower bulk carrier lifetimes than the n-type silicon cells. The approach is using gettering and bulk hydrogenation to improve the p-type silicon bulk quality, and then applying a-Si:H contacts to enable excellent surface passivation and carrier transport. This leads to an open-circuit voltage of 707 mV in p-type Czochralski silicon cells, and of 702 mV, the world-record open-circuit voltage in p-type multi-crystalline silicon cells.

Finally, CdTe cells with p-type a-Si:H hole-selective contacts are studied. As a proof of concept, p-type a-Si:H contacts enable achieving the highest reported open-circuit voltages (1.1 V) in mono-crystalline CdTe devices. A comparative study of applying p-type a-Si:H contacts in poly-crystalline CdTe solar cells is performed, resulting in absolute voltage gain of 53 mV over using the standard tellurium contacts.
ContributorsShi, Jianwei (Author) / Holman, Zachary (Thesis advisor) / Bowden, Stuart (Committee member) / Bertoni, Mariana (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
157167-Thumbnail Image.png
Description
In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT

In this dissertation, I investigate the electronic properties of two important silicon(Si)-based heterojunctions 1) hydrogenated amorphous silicon/crystalline silicon (a-Si:H/c-Si) which has already been commercialized in Heterojunction with Intrinsic Thin-layer (HIT) cells and 2) gallium phosphide/silicon (GaP/Si) which has been suggested to be a good candidate for replacing a-Si:H/c-Si in HIT cells in order to boost the HIT cell’s efficiency.

In the first part, the defect states of amorphous silicon (a-Si) and a-Si:H material are studied using density functional theory (DFT). I first employ simulated annealing using molecular dynamics (MD) to create stable configurations of a-Si:H, and then analyze the atomic and electronic structure to investigate which structural defects interact with H, and how the electronic structure changes with H addition. I find that H atoms decrease the density of mid-gap states and increase the band gap of a-Si by binding to Si atoms with strained bonds. My results also indicate that Si atoms with strained bonds creates high-localized orbitals in the mobility gap of a-Si, and the binding of H atoms to them can dramatically decrease their degree of localization.



In the second part, I explore the effect of the H binding configuration on the electronic properties of a-Si:H/c-Si heterostructure using density functional theory studies of models of the interface between a-Si:H and c-Si. The electronic properties from DFT show that depending on the energy difference between configurations, the electronic properties are sensitive to the H binding configurations.

In the last part, I examine the electronic structure of GaP/Si(001) heterojunctions and the effect of hydrogen H passivation at the interface in comparison to interface mixing, through DFT calculations. My calculations show that due to the heterovalent mismatch nature of the GaP/Si interface, there is a high density of localized states at the abrupt GaP/Si interface due to the excess charge associated with heterovalent bonding, as reported elsewhere. I find that the addition of H leads to additional bonding at the interface which mitigates the charge imbalance, and greatly reduces the density of localized states, leading to a nearly ideal heterojunction.
ContributorsVatan Meidanshahi, Reza (Author) / Goodnick, Stephen Marshall (Thesis advisor) / Vasileska, Dragica (Committee member) / Bowden, Stuart (Committee member) / Honsberg, Christiana (Committee member) / Arizona State University (Publisher)
Created2019
154075-Thumbnail Image.png
Description
Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices

Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices in both the light emitting diode (LED) and solar industries, and the present substrate wafering process results in >50% waste, the need for an improved ingot wafering technique exists.

The focus of this work is the design and understanding of a novel semiconductor wafering technique that utilizes the nonlinear absorption properties of band-gapped materials to achieve bulk (subsurface) morphological changes in matter using highly focused laser light. A method and tool was designed and developed to form controlled damage regions in the bulk of a crystalline sapphire wafer leaving the surfaces unaltered. The controllability of the subsurface damage geometry was investigated, and the effect of numerical aperture of the focusing optic, energy per pulse, wavelength, and number of pulses was characterized for a nanosecond pulse length variable wavelength Nd:YAG OPO laser.

A novel model was developed to describe the geometry of laser induced morphological changes in the bulk of semiconducting materials for nanosecond pulse lengths. The beam propagation aspect of the model was based on ray-optics, and the full Keldysh multiphoton photoionization theory in conjuncture with Thornber's and Drude's models for impact ionization were used to describe high fluence laser light absorption and carrier generation ultimately resulting in permanent material modification though strong electron-plasma absorption and plasma melting. Although the electron-plasma description of laser damage formation is usually reserved for extremely short laser pulses (<20 ps), this work shows that it can be adapted for longer pulses of up to tens of nanoseconds.

In addition to a model describing damage formation of sub-band gap energy laser light in semiconducting and transparent crystalline dielectrics, a novel nanosecond laser process was successfully realized to generate a thin plane of damage in the bulk of sapphire wafers. This was accomplished using high numerical aperture optics, a variable wavelength nanosecond laser source, and three-dimensional motorized precision stage control.
ContributorsLeBeau, James (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Bertoni, Mariana (Committee member) / Cotter, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015
154722-Thumbnail Image.png
Description
This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s

This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s historical load data. Sustainability, greenhouse gas emissions, carbon neutrality, and photovoltaic (PV) penetration are all considered along with potential economic impacts.

By extrapolating the air-conditioning load profile from the existing data sets, it can be ensured that cooling demands can be met at all times under the new management method. Using this cooling demand data, it is possible to determine how much energy is required to meet these needs. Then, modeling the PV arrays, the thermal energy storage (TES), and the chillers, the maximum PV penetration in the future state can be determined.

Using this approach, it has been determined that ASU can increase their solar PV resources by a factor of 3.460, which would amount to a PV penetration of approximately 48%.
ContributorsRouthier, Alexander F (Author) / Honsberg, Christiana (Thesis advisor) / Fraser, Matthew (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
153902-Thumbnail Image.png
Description
The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells

The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells favour a decrease in production costs and improve cell performance at the same time. Since about 30 % of the module cost is a result of substrate cost, thin solar cells are of economic advantage than their thicker counterparts. This lead to the research for development of thin heterojunction solar cells. For high cell efficiencies and performance, it is important for cells to have a high operating voltage and Voc. Development of heterojunction cells with high Voc required a stable and repeatable baseline process on which further improvements could be made. Therefore a baseline process for heterojunction solar cells was developed and demonstrated as a pilot line at the Solar Power Lab at ASU. All the processes involved in fabrication of cells with the baseline process were optimized to have a stable and repeatable process. The cells produced with the baseline process were 19-20% efficient. The baseline process was further used as a backbone to improve and develop thin cells with even higher Voc. The process recipe was optimized with an aim to explore the limits of Voc that could be achieved with this structure on a much thinner substrate than used for the baseline process. A record Voc greater than 760mV was recorded at SPL using Suns-Voc tester on a 50 microns thick heterojunction cell without metallization. Furthermore, Voc of 754.2 mV was measured on a 50 microns thick cell with metallization by National Renewable Energy Laboratory (NREL), which is a record for Voc for heterojunction cells with metallization. High Voc corresponds to high cell efficiency and therefore, higher module voltage and power with using the same number of cells as compared to other c-Si solar cells.
ContributorsMonga, Tanmay (Author) / Bowden, Stuart (Thesis advisor) / Dauksher, William (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2015
155006-Thumbnail Image.png
Description
Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected

Potential-Induced Degradation (PID) is an extremely serious photovoltaic (PV) durability issue significantly observed in crystalline silicon PV modules due to its rapid power degradation, particularly when compared to other PV degradation modes. The focus of this dissertation is to understand PID mechanisms and to develop PID-free cells and modules. PID-affected modules have been claimed to be fully recovered by high temperature and reverse potential treatments. However, the results obtained in this work indicate that the near-full recovery of efficiency can be achieved only at high irradiance conditions, but the full recovery of efficiency at low irradiance levels, of shunt resistance, and of quantum efficiency (QE) at short wavelengths could not be achieved. The QE loss observed at short wavelengths was modeled by changing the front surface recombination velocity. The QE scaling error due to a measurement on a PID shunted cell was addressed by developing a very low input impedance accessory applicable to an existing QE system. The impacts of silicon nitride (SiNx) anti-reflection coating (ARC) refractive index (RI) and emitter sheet resistance on PID are presented. Low RI ARC cells (1.87) were observed to be PID-susceptible whereas high RI ARC cells (2.05) were determined to be PID-resistant using a method employing high dose corona charging followed by time-resolved measurement of surface voltage. It has been demonstrated that the PID could be prevented by deploying an emitter having a low sheet resistance (~ 60 /sq) even if a PID-susceptible ARC is used in a cell. Secondary ion mass spectroscopy (SIMS) results suggest that a high phosphorous emitter layer hinders sodium transport, which is responsible for the PID. Cells can be screened for PID susceptibility by illuminated lock-in thermography (ILIT) during the cell fabrication process, and the sample structure for this can advantageously be simplified as long as the sample has the SiNx ARC and an aluminum back surface field. Finally, this dissertation presents a prospective method for eliminating or minimizing the PID issue either in the factory during manufacturing or in the field after system installation. The method uses commercially available, thin, and flexible Corning® Willow® Glass sheets or strips on the PV module glass superstrates, disrupting the current leakage path from the cells to the grounded frame.
ContributorsOh, Jaewon (Author) / Bowden, Stuart (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Honsberg, Christiana (Committee member) / Hacke, Peter (Committee member) / Schroder, Dieter (Committee member) / Arizona State University (Publisher)
Created2016
152632-Thumbnail Image.png
Description
Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime.

Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona charging technique showed the ability to inject charges into the SiNx films in a short time. Minority carrier lifetimes of the Czochralski (CZ) Si wafers increased significantly after either positive or negative charging. A fast and contactless method to characterize the charged overlying insulators on Si wafer through lifetime measurements is proposed and studied in this work, to overcome the drawbacks of capacitance-voltage (CV) measurements such as time consuming, induction of contanmination and hysteresis effect, etc. Analytical simulations showed behaviors of inverse lifetime (Auger corrected) vs. minority carrier density curves depend on insulator charge densities (Nf). From the curve behavior, the Si surface condition and region of Nf can be estimated. When the silicon surface is at high strong inversion or high accumulation, insulator charge density (Nf) or surface recombination velocity parameters (Sn0 and Sp0) can be determined from the slope of inverse lifetime curves, if the other variable is known. If Sn0 and Sp0 are unknown, Nf values of different samples can be compared as long as all have similar Sn0 and Sp0 values. Using the saturation current density (J0) and intercept fit extracted from the lifetime measurement, the bulk lifetime can be calculated. Therefore, this method is feasible and promising for charged insulator characterization.
ContributorsYang, Qun (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2014