This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

161906-Thumbnail Image.png
Description
In many real-world machine learning classification applications, well labeled training data can be difficult, expensive, or even impossible to obtain. In such situations, it is sometimes possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data

In many real-world machine learning classification applications, well labeled training data can be difficult, expensive, or even impossible to obtain. In such situations, it is sometimes possible to label a small subset of data as belonging to the class of interest though it is impractical to manually label all data not of interest. The result is a small set of positive labeled data and a large set of unknown and unlabeled data. This is known as the Positive and Unlabeled learning (PU learning) problem, a type of semi-supervised learning. In this dissertation, the PU learning problem is rigorously defined, several common assumptions described, and a literature review of the field provided. A new family of effective PU learning algorithms, the MLR (Modified Logistic Regression) family of algorithms, is described. Theoretical and experimental justification for these algorithms is provided demonstrating their success and flexibility. Extensive experimentation and empirical evidence are provided comparing several new and existing PU learning evaluation estimation metrics in a wide variety of scenarios. The surprisingly clear advantage of a simple recall estimate as the best estimate for overall PU classifier performance is described. Finally, an application of PU learning to the field of solar fault detection, an area not previously explored in the field, demonstrates the advantage and potential of PU learning in new application domains.
ContributorsJaskie, Kristen P (Author) / Spanias, Andreas (Thesis advisor) / Blain-Christen, Jennifer (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Thiagarajan, Jayaraman (Committee member) / Arizona State University (Publisher)
Created2021