This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

189353-Thumbnail Image.png
Description
In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of enormous model size and high computational complexity, which significantly hampers

In recent years, Artificial Intelligence (AI) (e.g., Deep Neural Networks (DNNs), Transformer) has shown great success in real-world applications due to its superior performance in various cognitive tasks. The impressive performance achieved by AI models normally accompanies the cost of enormous model size and high computational complexity, which significantly hampers their implementation on resource-limited Cyber-Physical Systems (CPS), Internet-of-Things (IoT), or Edge systems due to their tightly constrained energy, computing, size, and memory budget. Thus, the urgent demand for enhancing the \textbf{Efficiency} of DNN has drawn significant research interests across various communities. Motivated by the aforementioned concerns, this doctoral research has been mainly focusing on Enabling Deep Learning at Edge: From Efficient and Dynamic Inference to On-Device Learning. Specifically, from the inference perspective, this dissertation begins by investigating a hardware-friendly model compression method that effectively reduces the size of AI model while simultaneously achieving improved speed on edge devices. Additionally, due to the fact that diverse resource constraints of different edge devices, this dissertation further explores dynamic inference, which allows for real-time tuning of inference model size, computation, and latency to accommodate the limitations of each edge device. Regarding efficient on-device learning, this dissertation starts by analyzing memory usage during transfer learning training. Based on this analysis, a novel framework called "Reprogramming Network'' (Rep-Net) is introduced that offers a fresh perspective on the on-device transfer learning problem. The Rep-Net enables on-device transferlearning by directly learning to reprogram the intermediate features of a pre-trained model. Lastly, this dissertation studies an efficient continual learning algorithm that facilitates learning multiple tasks without the risk of forgetting previously acquired knowledge. In practice, through the exploration of task correlation, an interesting phenomenon is observed that the intermediate features are highly correlated between tasks with the self-supervised pre-trained model. Building upon this observation, a novel approach called progressive task-correlated layer freezing is proposed to gradually freeze a subset of layers with the highest correlation ratios for each task leading to training efficiency.
ContributorsYang, Li (Author) / Fan, Deliang (Thesis advisor) / Seo, Jae-Sun (Committee member) / Zhang, Junshan (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2023
156246-Thumbnail Image.png
Description
Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node

Diffusion processes in networks can be used to model many real-world processes, such as the propagation of a rumor on social networks and cascading failures on power networks. Analysis of diffusion processes in networks can help us answer important questions such as the role and the importance of each node in the network for spreading the diffusion and how to top or contain a cascading failure in the network. This dissertation consists of three parts.

In the first part, we study the problem of locating multiple diffusion sources in networks under the Susceptible-Infected-Recovered (SIR) model. Given a complete snapshot of the network, we developed a sample-path-based algorithm, named clustering and localization, and proved that for regular trees, the estimators produced by the proposed algorithm are within a constant distance from the real sources with a high probability. Then, we considered the case in which only a partial snapshot is observed and proposed a new algorithm, named Optimal-Jordan-Cover (OJC). The algorithm first extracts a subgraph using a candidate selection algorithm that selects source candidates based on the number of observed infected nodes in their neighborhoods. Then, in the extracted subgraph, OJC finds a set of nodes that "cover" all observed infected nodes with the minimum radius. The set of nodes is called the Jordan cover, and is regarded as the set of diffusion sources. We proved that OJC can locate all sources with probability one asymptotically with partial observations in the Erdos-Renyi (ER) random graph. Multiple experiments on different networks were done, which show our algorithms outperform others.

In the second part, we tackle the problem of reconstructing the diffusion history from partial observations. We formulated the diffusion history reconstruction problem as a maximum a posteriori (MAP) problem and proved the problem is NP hard. Then we proposed a step-by- step reconstruction algorithm, which can always produce a diffusion history that is consistent with the partial observations. Our experimental results based on synthetic and real networks show that the algorithm significantly outperforms some existing methods.

In the third part, we consider the problem of improving the robustness of an interdependent network by rewiring a small number of links during a cascading attack. We formulated the problem as a Markov decision process (MDP) problem. While the problem is NP-hard, we developed an effective and efficient algorithm, RealWire, to robustify the network and to mitigate the damage during the attack. Extensive experimental results show that our algorithm outperforms other algorithms on most of the robustness metrics.
ContributorsChen, Zhen (Author) / Ying, Lei (Thesis advisor) / Tong, Hanghang (Thesis advisor) / Zhang, Junshan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2018