This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
158024-Thumbnail Image.png
Description
The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to

The recent proliferation of online platforms has not only revolutionized the way people communicate and acquire information but has also led to propagation of malicious information (e.g., online human trafficking, spread of misinformation, etc.). Propagation of such information occurs at unprecedented scale that could ultimately pose imminent societal-significant threats to the public. To better understand the behavior and impact of the malicious actors and counter their activity, social media authorities need to deploy certain capabilities to reduce their threats. Due to the large volume of this data and limited manpower, the burden usually falls to automatic approaches to identify these malicious activities. However, this is a subtle task facing online platforms due to several challenges: (1) malicious users have strong incentives to disguise themselves as normal users (e.g., intentional misspellings, camouflaging, etc.), (2) malicious users are high likely to be key users in making harmful messages go viral and thus need to be detected at their early life span to stop their threats from reaching a vast audience, and (3) available data for training automatic approaches for detecting malicious users, are usually either highly imbalanced (i.e., higher number of normal users than malicious users) or comprise insufficient labeled data.

To address the above mentioned challenges, in this dissertation I investigate the propagation of online malicious information from two broad perspectives: (1) content posted by users and (2) information cascades formed by resharing mechanisms in social media. More specifically, first, non-parametric and semi-supervised learning algorithms are introduced to discern potential patterns of human trafficking activities that are of high interest to law enforcement. Second, a time-decay causality-based framework is introduced for early detection of “Pathogenic Social Media (PSM)” accounts (e.g., terrorist supporters). Third, due to the lack of sufficient annotated data for training PSM detection approaches, a semi-supervised causal framework is proposed that utilizes causal-related attributes from unlabeled instances to compensate for the lack of enough labeled data. Fourth, a feature-driven approach for PSM detection is introduced that leverages different sets of attributes from users’ causal activities, account-level and content-related information as well as those from URLs shared by users.
ContributorsAlvari, Hamidreza (Author) / Shakarian, Paulo (Thesis advisor) / Davulcu, Hasan (Committee member) / Tong, Hanghang (Committee member) / Ruston, Scott (Committee member) / Arizona State University (Publisher)
Created2020