This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

155726-Thumbnail Image.png
Description
Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found

Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity of the website and analyze their robustness in classifying a phishing website. Our emphasis is on determining the predictive performance of robust features. We evaluate the classification accuracy when using the entire feature set and when URL features or site popularity features are excluded from the feature set and show how our approach can be used to effectively predict specific types of phishing attacks such as shortened URLs and randomized URLs. Using both decision table classifiers and neural network classifiers, our results indicate that robust features seem to have enough predictive power to be used in practice.
ContributorsNamasivayam, Bhuvana Lalitha (Author) / Bazzi, Rida (Thesis advisor) / Zhao, Ziming (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2017