This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156825-Thumbnail Image.png
Description
Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from

Being a remarkably versatile and inexpensive building material, concrete has found tremendous use in development of modern infrastructure and is the most widely used material in the world. Extensive research in the field of concrete has led to the development of a wide array of concretes with applications ranging from building of skyscrapers to paving of highways. These varied applications require special cementitious composites which can satisfy the demand for enhanced functionalities such as high strength, high durability and improved thermal characteristics among others.

The current study focuses on the fundamental understanding of such functional composites, from their microstructural design to macro-scale application. More specifically, this study investigates three different categories of functional cementitious composites. First, it discusses the differences between cementitious systems containing interground and blended limestone with and without alumina. The interground systems are found to outperform the blended systems due to differential grinding of limestone. A novel approach to deduce the particle size distribution of limestone and cement in the interground systems is proposed. Secondly, the study delves into the realm of ultra-high performance concrete, a novel material which possesses extremely high compressive-, tensile- and flexural-strength and service life as compared to regular concrete. The study presents a novel first principles-based paradigm to design economical ultra-high performance concretes using locally available materials. In the final part, the study addresses the thermal benefits of a novel type of concrete containing phase change materials. A software package was designed to perform numerical simulations to analyze temperature profiles and thermal stresses in concrete structures containing PCMs.

The design of these materials is accompanied by material characterization of cementitious binders. This has been accomplished using techniques that involve measurement of heat evolution (isothermal calorimetry), determination and quantification of reaction products (thermo-gravimetric analysis, x-ray diffraction, micro-indentation, scanning electron microscopy, energy-dispersive x-ray spectroscopy) and evaluation of pore-size distribution (mercury intrusion porosimetry). In addition, macro-scale testing has been carried out to determine compression, flexure and durability response. Numerical simulations have been carried out to understand hydration of cementitious composites, determine optimum particle packing and determine the thermal performance of these composites.
ContributorsArora, Aashay (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G (Committee member) / Arizona State University (Publisher)
Created2018
154997-Thumbnail Image.png
Description
As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and

As the demand of sustainable construction materials increases, use of fibers and textiles as partial or full reinforcement in concrete members present a tremendous opportunity. Proper characterization techniques and design guides for hybrid materials are therefore needed. This dissertation presents a comprehensive study on serviceability-based design of strain softening and strain hardening materials. Multiple experimental procedures are developed to document the nature of single crack localization and multiple cracking mechanisms in various fiber and fabric reinforced cement-based composites. In addition, strain rate effects on the mechanical properties are examined using a high speed servo-hydraulic tension test equipment.

Significant hardening and degradation parameters such as stiffness, crack spacing, crack width, localized zone size are obtained from tensile tests using digital image correlation (DIC) technique. A tension stiffening model is used to simulate the tensile response that addresses the cracking and localization mechanisms. The model is also modified to simulate the sequential cracking in joint-free slabs on grade reinforced by steel fibers, where the lateral stiffness of slab and grade interface and stress-crack width response are the most important model parameters.

Parametric tensile and compressive material models are used to formulate generalized analytical solutions for flexural behaviors of hybrid reinforced concrete (HRC) that contains both rebars and fibers. Design recommendations on moment capacity, minimum reinforcement ratio etc. are obtained using analytical equations. The role of fiber in reducing the amount of conventional reinforcement is revealed. The approach is extended to T-sections and used to model Ultra High Performance Concrete (UHPC) beams and girders.

The analytical models are extended to structural members subjected to combined axial and bending actions. Analytical equations to address the P-M diagrams are derived. Closed-form equations that generate the interaction diagram of HRC section are presented which may be used in the design of multiple types of applications.

The theoretical models are verified by independent experimental results from literature. Reliability analysis using Monte Carlo simulation (MCS) is conducted for few design problems on ultimate state design. The proposed methodologies enable one to simulate the experiments to obtain material parameters and design structural members using generalized formulations.
ContributorsYao, Yiming (Author) / Mobasher, Barzin (Thesis advisor) / Underwood, Benjamin (Committee member) / Neithalath, Narayanan (Committee member) / Rajan, Subramaniam D. (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016