This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

156822-Thumbnail Image.png
Description
Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements

Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification.
ContributorsKolala Venkataramanaiah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2018