This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155563-Thumbnail Image.png
Description
The main objective of this study is to investigate the effect of polypropylene fiber morphology on the tensile response of cementitious composites. Two proprietary polypropylene fibers manufactured by BASF – MAC 2200CB, a crimped monofilament macro fiber and MF40, a bundled multi filament polypropylene made up of 500 filaments,40-micron diameter

The main objective of this study is to investigate the effect of polypropylene fiber morphology on the tensile response of cementitious composites. Two proprietary polypropylene fibers manufactured by BASF – MAC 2200CB, a crimped monofilament macro fiber and MF40, a bundled multi filament polypropylene made up of 500 filaments,40-micron diameter each were compared. The stiff structure and crimped geometry of MAC 2200 CB was studied in comparison with the multifilament MF40, which provide a higher surface area and a bundled fiber effect. Uniaxial tensile tests were performed on individual fibers to study fiber strength and failure pattern at three different gage lengths. The interaction of these 2 fibers with cement matrix was studied under varying strain rate, embedded fiber length and matrix mixes by a series of quassi - static fiber pullout tests. Unidirectional filament wound composite laminates were manufactures with the two fibers and only MF40 woven textiles were used to manufacture MF40 textile reinforced composites. The mechanical behavior of polypropylene fiber and textile reinforced cementitious composites subjected to static tensile loading with the effects of fiber type and dosage, textile weave and dosage, matrix formulations, processing techniques etc. is studied. Evolution of distributed cracking mechanism and local strain fields was documented using digital image correlation (DIC) and correlated with the tensile response and stiffness degradation. VIC 3D-7, commercial software developed by Correlated Solutions, Inc. was used to run the DIC analysis for the tensile tests on laminates. The DIC technique was further used for automated determination of crack density, crack spacing, and characterizing damage evolution.
ContributorsMehere, Himai Ashok (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2017
157709-Thumbnail Image.png
Description
This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional

This dissertation aims at developing novel materials and processing routes using alkali activated aluminosilicate binders for porous (lightweight) geopolymer matrices and 3D-printing concrete applications. The major research objectives are executed in different stages. Stage 1 includes developing synthesis routes, microstructural characterization, and performance characterization of a family of economical, multifunctional porous ceramics developed through geopolymerization of an abundant volcanic tuff (aluminosilicate mineral) as the primary source material. Metakaolin, silica fume, alumina powder, and pure silicon powder are also used as additional ingredients when necessary and activated by potassium-based alkaline agents. In Stage 2, a processing route was developed to synthesize lightweight geopolymer matrices from fly ash through carbonate-based activation. Sodium carbonate (Na2CO3) was used in this study to produce controlled pores through the release of CO2 during the low-temperature decomposition of Na2CO3. Stage 3 focuses on 3D printing of binders using geopolymeric binders along with several OPC-based 3D printable binders. In Stage 4, synthesis and characterization of 3D-printable foamed fly ash-based geopolymer matrices for thermal insulation is the focus. A surfactant-based foaming process, multi-step mixing that ensures foam jamming transition and thus a dry foam, and microstructural packing to ensure adequate skeletal density are implemented to develop foamed suspensions amenable to 3D-printing. The last stage of this research develops 3D-printable alkali-activated ground granulated blast furnace slag mixture. Slag is used as the source of aluminosilicate and shows excellent mechanical properties when activated by highly alkaline activator (NaOH + sodium silicate solution). However, alkali activated slag sets and hardens rapidly which is undesirable for 3D printing. Thus, a novel mixing procedure is developed to significantly extend the setting time of slag activated with an alkaline activator to suit 3D printing applications without the use of any retarding admixtures. This dissertation, thus advances the field of sustainable and 3D-printable matrices and opens up a new avenue for faster and economical construction using specialized materials.
ContributorsAlghamdi, Hussam Suhail G (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Abbaszadegan, Morteza (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2019