This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153520-Thumbnail Image.png
Description
The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid

The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction algorithms, there exist several volume-of-fluid transportation algorithms. This paper will discuss two operator-splitting advection algorithms and an unsplit advection algorithm. Using these three interface reconstruction algorithms, and three advection algorithms, a comparison will be drawn to see how different combinations of these algorithms perform with respect to accuracy as well as computational expense.
ContributorsKedelty, Dominic (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023