This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

153520-Thumbnail Image.png
Description
The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid

The Volume-of-Fluid method is a popular method for interface tracking in Multiphase applications within Computational Fluid Dynamics. To date there exists several algorithms for reconstruction of a geometric interface surface. Of these are the Finite Difference algorithm, Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, LVIRA, and the Efficient Least Squares Volume-of-Fluid Interface Reconstruction Algorithm, ELVIRA. Along with these geometric interface reconstruction algorithms, there exist several volume-of-fluid transportation algorithms. This paper will discuss two operator-splitting advection algorithms and an unsplit advection algorithm. Using these three interface reconstruction algorithms, and three advection algorithms, a comparison will be drawn to see how different combinations of these algorithms perform with respect to accuracy as well as computational expense.
ContributorsKedelty, Dominic (Author) / Herrmann, Marcus (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015