This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155020-Thumbnail Image.png
Description
Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components – deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNA®, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo’s T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.
ContributorsHoffarth, Canio (Author) / Rajan, Subramaniam D. (Thesis advisor) / Goldberg, Robert (Committee member) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016
158807-Thumbnail Image.png
Description
Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders

Ultra High Performance (UHP) cementitious binders are a class of cement-based materials with high strength and ductility, designed for use in precast bridge connections, bridge superstructures, high load-bearing structural members like columns, and in structural repair and strengthening. This dissertation aims to elucidate the chemo-mechanical relationships in complex UHP binders to facilitate better microstructure-based design of these materials and develop machine learning (ML) models to predict their scale-relevant properties from microstructural information.To establish the connection between micromechanical properties and constitutive materials, nanoindentation and scanning electron microscopy experiments are performed on several cementitious pastes. Following Bayesian statistical clustering, mixed reaction products with scattered nanomechanical properties are observed, attributable to the low degree of reaction of the constituent particles, enhanced particle packing, and very low water-to-binder ratio of UHP binders. Relating the phase chemistry to the micromechanical properties, the chemical intensity ratios of Ca/Si and Al/Si are found to be important parameters influencing the incorporation of Al into the C-S-H gel.
ML algorithms for classification of cementitious phases are found to require only the intensities of Ca, Si, and Al as inputs to generate accurate predictions for more homogeneous cement pastes. When applied to more complex UHP systems, the overlapping chemical intensities in the three dominant phases – Ultra High Stiffness (UHS), unreacted cementitious replacements, and clinker – led to ML models misidentifying these three phases. Similarly, a reduced amount of data available on the hard and stiff UHS phases prevents accurate ML regression predictions of the microstructural phase stiffness using only chemical information. The use of generic virtual two-phase microstructures coupled with finite element analysis is also adopted to train MLs to predict composite mechanical properties. This approach applied to three different representations of composite materials produces accurate predictions, thus providing an avenue for image-based microstructural characterization of multi-phase composites such UHP binders. This thesis provides insights into the microstructure of the complex, heterogeneous UHP binders and the utilization of big-data methods such as ML to predict their properties. These results are expected to provide means for rational, first-principles design of UHP mixtures.
ContributorsFord, Emily Lucile (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Hoover, Christian G. (Committee member) / Maneparambil, Kailas (Committee member) / Arizona State University (Publisher)
Created2020