This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168290-Thumbnail Image.png
Description
Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a

Glasses have many applications such as containers, substrates of displays, high strength fibers and portable electronic display panels. Their excellent mechanical properties such as high hardness, good forming ability and scratch resistance make glasses ideal for these applications. Many factors affect the selection of one glass over another for a given purpose such as cost, ingredients, scalability of manufacturing, etc. Typically, silicate based glasses are often selected because they satisfy most of the selection criteria. However, with the recent abundant use of these glasses in touch-based applications, understanding their abilities to dissipate energy due to surface contact loads has become increasingly desirable. The most common silicate glasses worldwide are glassy silica and soda lime. Calcium aluminosilicates are also gaining popularity due to their importance as substrates for display screens in electronic devices. The surface energy dissipation and strength of these glasses are based on several factors, but predominantly rely on ingredient composition and the so-called Indentation Size Effect (ISE), where the strength depends on the maximum surface force. Both the composition and ISE alter the strength and favored energy dissipation mechanisms of the glass. Unlocking the contribution of these mechanisms and elucidating their dependence on composition and force is the underlining goal of this thesis.Prior to cracking, silicate glasses can inelastically deform by shear and densification. However, the link between the mechanical properties, strength, glass structure and maximum force and the propensity by which either of these mechanisms are favored still remains unclear. In this study, the first aim is to elucidate the causes of the ISE and i explore the relationships between the ISE and the dissipation mechanisms, and identify what feature(s) of the glass can be used to infer their behavior. All glasses have shown a strong link between the ISE and shear flow and densification. Second, the link between composition and the dissipation mechanisms will be elucidated. This is accomplished by performing indentation tests coupled with an annealing method to independently quantify the amount of volume associated with each dissipation mechanism and elucidate relationships with ingredients and structure of the glasses. Some conclusions will then be presented that link all these behaviors together.
ContributorsKazembeyki, Maryam (Author) / Hoover, Christian G (Thesis advisor) / Rajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Chawla, Nikhilesh (Committee member) / Perreault, Francois (Committee member) / Arizona State University (Publisher)
Created2021
155020-Thumbnail Image.png
Description
Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of

Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components – deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNA®, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo’s T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.
ContributorsHoffarth, Canio (Author) / Rajan, Subramaniam D. (Thesis advisor) / Goldberg, Robert (Committee member) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2016