Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 5 of 5
165081-Thumbnail Image.png
Description

For this thesis, the energy of the CXLS electron beam was measured and the beam’s energy jitter was calculated. It is essential to characterize the beam’s en- ergy and energy jitter in order to ensure that the powerful x-rays produced by CXLS will be of a consistent and desirable energy.

For this thesis, the energy of the CXLS electron beam was measured and the beam’s energy jitter was calculated. It is essential to characterize the beam’s en- ergy and energy jitter in order to ensure that the powerful x-rays produced by CXLS will be of a consistent and desirable energy. The energy of the electrons within the electron beam can be calculated through utilizing basic physics prin- ciples and the geometry of the beamline. The energy of the beam for the data collected was found to be 3.426 MeV at POP module 1 and 12.3 MeV at POP module 9. The energy jitter of the beam was determined for four different angle settings of the VPSPD for linac 1 and found to be lowest when the linac 1 VPSPD was set to an angle of 97°. The energy jitter of the beam was 1.50e-03 MeV when the VPSPD for linac 1 was set to 97°.

ContributorsLarsen, Rachel (Author) / Graves, William (Thesis director) / Teitelbaum, Samuel (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Physics (Contributor)
Created2022-05
164633-Thumbnail Image.png
Description
The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of

The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of precision. This thesis measures the precision with which that system performs.
ContributorsBabic, Gregory (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Holl, Mark (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2022-05
Description
X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the future compact x-ray free electron laser (CXFEL) XPCI source. The signal was reported in tonal values (“counts”), where MATLAB and MATLAB App Designer were the computing environments used to develop the simulations. The experimental setup’s components included a yttrium aluminum garnet (YAG) scintillating screen, mirror, and Mako G-507C camera with a Sony IMX264 sensor. The main function of the setup was to aim the X-rays at the YAG screen, then measure its scintillation through the photons emitted that hit the camera sensor. The resulting quantity used to assess the signal strength was tonal values (“counts”) per pixel on the sensor. Data for X-ray transmission through water, air, and polyimide was sourced from The Center for X-ray Optics’s simulations website, after which the data was interpolated and referenced in MATLAB. Matrices were an integral part of the saturation calculations; field-of-view (FOV), magnification and photon energies were also necessary. All the calculations were compiled into a graphical user interface (GUI) using App Designer. The code used to build this GUI can be used as a template for later, more complex GUIs and is a great starting point for future work in XPCI research at CXFEL.
ContributorsDela Rosa, Trixia (Author) / Graves, William (Thesis director) / King, Dakota (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164640-Thumbnail Image.png
Description

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the future compact x-ray free electron laser (CXFEL) XPCI source. The signal was reported in tonal values (“counts”), where MATLAB and MATLAB App Designer were the computing environments used to develop the simulations. The experimental setup’s components included a yttrium aluminum garnet (YAG) scintillating screen, mirror, and Mako G-507C camera with a Sony IMX264 sensor. The main function of the setup was to aim the X-rays at the YAG screen, then measure its scintillation through the photons emitted that hit the camera sensor. The resulting quantity used to assess the signal strength was tonal values (“counts”) per pixel on the sensor. Data for X-ray transmission through water, air, and polyimide was sourced from The Center for X-ray Optics’s simulations website, after which the data was interpolated and referenced in MATLAB. Matrices were an integral part of the saturation calculations; field-of-view (FOV), magnification and photon energies were also necessary. All the calculations were compiled into a graphical user interface (GUI) using App Designer. The code used to build this GUI can be used as a template for later, more complex GUIs and is a great starting point for future work in XPCI research at CXFEL.

ContributorsDela Rosa, Trixia (Author) / Graves, William (Thesis director) / King, Dakota (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
164641-Thumbnail Image.jpg
Description

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the

X-ray phase contrast imaging (XPCI) is a novel imaging method that utilizes phase information of X-rays in order to produce images. XPCI allows for highly resolved features that traditional X-ray imaging modalities cannot discern. The objective of this experiment was to model initial simulations predicting the output signal of the future compact x-ray free electron laser (CXFEL) XPCI source. The signal was reported in tonal values (“counts”), where MATLAB and MATLAB App Designer were the computing environments used to develop the simulations. The experimental setup’s components included a yttrium aluminum garnet (YAG) scintillating screen, mirror, and Mako G-507C camera with a Sony IMX264 sensor. The main function of the setup was to aim the X-rays at the YAG screen, then measure its scintillation through the photons emitted that hit the camera sensor. The resulting quantity used to assess the signal strength was tonal values (“counts”) per pixel on the sensor. Data for X-ray transmission through water, air, and polyimide was sourced from The Center for X-ray Optics’s simulations website, after which the data was interpolated and referenced in MATLAB. Matrices were an integral part of the saturation calculations; field-of-view (FOV), magnification and photon energies were also necessary. All the calculations were compiled into a graphical user interface (GUI) using App Designer. The code used to build this GUI can be used as a template for later, more complex GUIs and is a great starting point for future work in XPCI research at CXFEL.

ContributorsDela Rosa, Trixia (Author) / Graves, William (Thesis director) / King, Dakota (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05