Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Description

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for

Phthalates are ubiquitous in the built environment and are used across various fields, despite known endocrine disruptive properties, and other associated health hazards, including abnormalities in reproductive health and development. I investigated the presence of phthalates in the built environment using the Health Product Declaration (HPD) repository to survey for products containing these chemicals, investigated the literature for possible health effects and alternatives to phthalates, and conducted a laboratoy-based feasibility study of urinary biomarkers associated with phthalates using wastewater-based epidemiology (WBE) on a US university campus at the building-scale. Of the 5,278 products in the HPD repository, 73 contained phthalates and were most commonly found in windows, doors, flooring, sealants, insulations, and furnishings. Alternative plasticizers (cardanol, epoxidized soybean oil, hydrogenated castor oil) usage were identified in 10 products from HPD repository. The two wastewater samples analyzed by liquid chromatography-tandem mass spectrometry (LC-MS-MS) showed that dimethyl phthalate (DMP) was detectable, as well as its human metabolite, monomethyl phthalate (MMP), observed at a concentration of 163-202 ng/L. These results indicate low human exposure from the building materials in the limited convenience sample investigated. Future studies of building scale wastewater-based epidemiology are recommended to investigate these and other phthalates commonly found in the built environment, including diisononyl phthalate (DINP) and diisononyl hexahydrophthalate (DINCH).

ContributorsGroves, Megan (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize

Synthetic plastics are ubiquitously used in a broad range of applications, including food and drink packaging. Plastics often contain chemical additives, including bisphenols, phthalates, and terephthalic acid, which can degrade under thermal stress. The environmental presence of these chemicals is cause for public concern, especially in consumer products that utilize plastic packaging, as many have been identified as endocrine disruptors. This study sought to determine exposure to phthalates, bisphenols, and terephthalic acid by quantifying a broad spectrum of these analytes within three bottled water brands at varying temperature exposure levels using the combination of solid phase extraction followed by isotope dilution liquid chromatography-tandem mass spectrometry. Monobenzyl phthalate was detected in two of the three brands after bottles were heated to ~100 °C, ranging from 98 – 107 ng/L, and bisphenol A was detected in one brand at ~100 °C at an average concentration of 748 ± 36 ng/L. Subsequent mass loading calculations demonstrated that bioaccumulation of BPA from Brand C after high levels of temperature exposure well exceeded the tolerable daily intake (TDI). Findings in this study indicate that consumers should not be expected to incur harmful exposures to the target compounds under normal conditions as analytes were not measured in water bottle samples at 25 °C or 60 °C. Further studies should explore a more nuisance approach to heating over long durations, including that of ultraviolet exposure.

ContributorsZevitz, Jacob (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor)
Created2022-12