Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

135822-Thumbnail Image.png
Description
Keyboard input biometric authentication systems are software systems which record keystroke information and use it to identify a typist. The primary statistics used to determine the accuracy of a keyboard biometric authentication system are the false acceptance rate (FAR) and false rejection rate (FRR), which are aimed to be as

Keyboard input biometric authentication systems are software systems which record keystroke information and use it to identify a typist. The primary statistics used to determine the accuracy of a keyboard biometric authentication system are the false acceptance rate (FAR) and false rejection rate (FRR), which are aimed to be as low as possible [1]. However, even if a system has a low FAR and FRR, there is nothing stopping an attacker from also monitoring an individual's typing habits in the same way a legitimate authentication system would, and using its knowledge of their habits to recreate virtual keyboard events for typing arbitrary text, with precise timing mimicking those habits, which would theoretically spoof a legitimate keyboard biometric authentication system into thinking it is the intended user doing the typing. A proof of concept of this very attack, called keyboard input biometric authentication spoofing, is the focus of this paper, with the purpose being to show that even if a biometric authentication system is reasonably accurate, with a low FAR and FRR, it can still potentially be very vulnerable to a well-crafted spoofing system. A rudimentary keyboard input biometric authentication system was written in C and C++ which drew influence from already existing methods and attempted new methods of authentication as well. A spoofing system was then built which exploited the authentication system's statistical representation of a user's typing habits to recreate keyboard events as described above. This proof of concept is aimed at raising doubts about the idea of relying too heavily upon keyboard input based biometric authentication systems since the user's typing input can demonstrably be spoofed in this way if an attacker has full access to the system, even if the system itself is accurate. The results are that the authentication system built for this study, when ran on a database of typing event logs recorded from 15 users in 4 sessions, had a 0% FAR and FRR (more detailed analysis of FAR and FRR is also presented), yet it was still very susceptible to being spoofed, with a 44% to 71% spoofing rate in some instances.
ContributorsJohnson, Peter Thomas (Author) / Nelson, Brian (Thesis director) / Amresh, Ashish (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164974-Thumbnail Image.png
Description
The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for

The goal of this project was to determine if the chosen research and testing method would result in a game where students would practice math in the best way. This was done by creating a video game using Unity that followed key principles for designing a math game and for how students should practice math in general. Testing was done on participants to determine the strategies they used in order to play the game and these strategies were then defined and categorized based on their effectiveness and how well they met the learning principles. Also, the participants were asked a before and after question to determine if the game improved their overall attitude towards math to make sure the game was helping them learn and was not a hindrance. There was an overall increase in the participants’ feelings towards math after playing the game as well as beneficial strategies, so the research and testing method was overall a success.
ContributorsVaillancourt, Tyler (Author) / Kobayashi, Yoshihiro (Thesis director) / Amresh, Ashish (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05