Barrett, The Honors College at Arizona State University proudly showcases the work of undergraduate honors students by sharing this collection exclusively with the ASU community.

Barrett accepts high performing, academically engaged undergraduate students and works with them in collaboration with all of the other academic units at Arizona State University. All Barrett students complete a thesis or creative project which is an opportunity to explore an intellectual interest and produce an original piece of scholarly research. The thesis or creative project is supervised and defended in front of a faculty committee. Students are able to engage with professors who are nationally recognized in their fields and committed to working with honors students. Completing a Barrett thesis or creative project is an opportunity for undergraduate honors students to contribute to the ASU academic community in a meaningful way.

Displaying 1 - 10 of 19
Filtering by

Clear all filters

131561-Thumbnail Image.png
Description
In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on

In this project, we created a code that was able to simulate the dynamics of a three site Hubbard model ring connected to an infinite dissipative bath and driven by an electric field. We utilized the master equation approach, which will one day be able to be implemented efficiently on a quantum computer. For now we used classical computing to model one of the simplest nontrivial driven dissipative systems. This will serve as a verification of the master equation method and a baseline to test against when we are able to implement it on a quantum computer. For this report, we will mainly focus on classifying the DC component of the current around our ring. We notice several expected characteristics of this DC current including an inverse square tail at large values of the electric field and a linear response region at small values of the electric field.
ContributorsJohnson, Michael (Author) / Chamberlin, Ralph (Thesis director) / Ritchie, Barry (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description

The objective of my honors thesis was to implement the mindfulness habit of journaling over the course of six months, then use the journal entries as a means to reflect upon observations of pre-selected metrics (connecting Zen teachings to my daily life, accessing my ability to rest, navigating relationships to

The objective of my honors thesis was to implement the mindfulness habit of journaling over the course of six months, then use the journal entries as a means to reflect upon observations of pre-selected metrics (connecting Zen teachings to my daily life, accessing my ability to rest, navigating relationships to others, and developing compassion for myself) in order to track how learning about Zen Buddhist philosophy impacts my life.

ContributorsAmavisca, Andrea (Author) / Schmidt, Peter (Thesis director) / Voorhees, Matthew (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor)
Created2022-12
Description

By studying the workflow used to create the black hole, Gargantua, in Interstellar, artists can understand how to simulate complex astronomical phenomena in other special effects software such as Houdini. This workflow utilizes a balance between scientific realism and artistic interpretation of astronomical phenomena such that simulations can maximize their

By studying the workflow used to create the black hole, Gargantua, in Interstellar, artists can understand how to simulate complex astronomical phenomena in other special effects software such as Houdini. This workflow utilizes a balance between scientific realism and artistic interpretation of astronomical phenomena such that simulations can maximize their success in film. Through significant amounts of research and study, the artists at Double Negative generated a scientifically realistic black hole in shape and physical behavior, but made creative decisions when shading and lighting their simulation. I find that DNeg’s workflow integrates well when using Houdini technology. I follow their workflow to generate a series of spiral galaxies in Houdini and find how Houdini’s node network layout allows artists to incorporate both scientific realism and creative approaches to a simulation. A strong understanding of the mechanics of the simulated astronomical event scientifically informs the look and shape of a production, while Houdini’s node network layout makes it easy for special effects artists to manipulate simulations to their own artistic interpretation of astronomical phenomena.

ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05
ContributorsJoiner, Jae (Author) / Kim, Sujin (Thesis director) / Lawson, Shawn (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Art (Contributor)
Created2023-05