This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 11 - 20 of 771
Filtering by

Clear all filters

129555-Thumbnail Image.png
Description

The Massachusetts mint of 1652-82 was a remarkably bold expression of colonial sovereignty. As a restored monarchy sought to wrest control of the Boston coinage after 1660, pragmatic moderates within the colony simultaneously sought to overpower the radical faction that, in clinging to the Bay shilling, demonstrated its dangerous pretensions

The Massachusetts mint of 1652-82 was a remarkably bold expression of colonial sovereignty. As a restored monarchy sought to wrest control of the Boston coinage after 1660, pragmatic moderates within the colony simultaneously sought to overpower the radical faction that, in clinging to the Bay shilling, demonstrated its dangerous pretensions to independence.

ContributorsBarth, Jonathan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-01
129557-Thumbnail Image.png
Description

Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy

Computer simulations of the Ising model exhibit white noise if thermal fluctuations are governed by Boltzmann's factor alone; whereas we find that the same model exhibits 1/f noise if Boltzmann's factor is extended to include local alignment entropy to all orders. We show that this nonlinear correction maintains maximum entropy during equilibrium fluctuations. Indeed, as with the usual way to resolve Gibbs' paradox that avoids entropy reduction during reversible processes, the correction yields the statistics of indistinguishable particles. The correction also ensures conservation of energy if an instantaneous contribution from local entropy is included. Thus, a common mechanism for 1/f noise comes from assuming that finite-size fluctuations strictly obey the laws of thermodynamics, even in small parts of a large system. Empirical evidence for the model comes from its ability to match the measured temperature dependence of the spectral-density exponents in several metals and to show non-Gaussian fluctuations characteristic of nanoscale systems.

ContributorsChamberlin, Ralph (Author) / Nasir, Derek (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-30
129560-Thumbnail Image.png
Description

Background: Elemental sulfur exists is a variety of forms in natural systems, from dissolved forms (noted as S8(diss) or in water as S8(aq)) to bulk elemental sulfur (most stable as α-S8). Elemental sulfur can form via several biotic and abiotic processes, many beginning with small sulfur oxide or polysulfidic sulfur

Background: Elemental sulfur exists is a variety of forms in natural systems, from dissolved forms (noted as S8(diss) or in water as S8(aq)) to bulk elemental sulfur (most stable as α-S8). Elemental sulfur can form via several biotic and abiotic processes, many beginning with small sulfur oxide or polysulfidic sulfur molecules that coarsen into S8 rings that then coalesce into larger forms:

SnO[2− over m] → S8(aq) → S8(nano) → S8(sol) →S 8(α−S8)(bulk). (1)

Formation of elemental sulfur can be possible via two primary techniques to create an emulsion of liquid sulfur in water called sulfur sols that approximate some mechanisms of possible elemental sulfur formation in natural systems. These techniques produce hydrophobic (S8(Weimarn)) and hydrophilic (S8(polysulfide)) sols that exist as nanoparticle and colloidal suspensions. These sols begin as small sulfur oxide or polysulfidic sulfur molecules, or dissolved S8(aq) forms, but quickly become nanoparticulate and coarsen into micron sized particles via a combination of classical nucleation, aggregation processes, and/or Ostwald ripening.

Results: We conducted a series of experiments to study the rate of elemental sulfur particle coarsening using dynamic light scattering (DLS) analysis under different physical and chemical conditions. Rates of nucleation and initial coarsening occur over seconds to minutes at rates too fast to measure by DLS, with subsequent coarsening of S8(nano) and S8(sol) being strongly temperature dependent, with rates up to 20 times faster at 75°C compared to 20°C. The addition of surfactants (utilizing ionic and nonionic surfactants as model compounds) results in a significant reduction of coarsening rates, in addition to known effects of these molecules on elemental sulfur solubility. DLS and cryo-SEM results suggest coarsening is largely a product of ripening processes rather than particle aggregation, especially at higher temperatures. Fitting of the coarsening rate data to established models for Ostwald ripening additionally support this as a primary mechanism of coarsening.

Conclusions: Elemental sulfur sols coarsen rapidly at elevated temperatures and experience significant effects on both solubility and particle coarsening kinetics due to interaction with surfactants. Growth of elemental sulfur nanoparticles and sols is largely governed by Ostwald ripening processes.

ContributorsGarcia, Angel (Author) / Druschel, Gregory K. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-06
129565-Thumbnail Image.png
Description

The Turán number of an r-uniform hypergraph H is the maximum number of edges in any r-graph on n vertices which does not contain H as a subgraph. Let P[(r) over l] denote the family of r-uniform loose paths on l edges, F(k,l) denote the family of hypergraphs consisting of

The Turán number of an r-uniform hypergraph H is the maximum number of edges in any r-graph on n vertices which does not contain H as a subgraph. Let P[(r) over l] denote the family of r-uniform loose paths on l edges, F(k,l) denote the family of hypergraphs consisting of k disjoint paths from P[(r) over l], and L[(r) over l] denote an r-uniform linear path on l edges. We determine precisely exr(n; F(k,l)) and exr(n; . L[(r) over l]), as well as the Turán numbers for forests of paths of differing lengths (whether these paths are loose or linear) when n is appropriately large dependent on k,l,r for r ≥ 3. Our results build on recent results of Füredi, Jiang, and Seiver, who determined the extremal numbers for individual paths, and provide more hypergraphs whose Turán numbers are exactly determined.

ContributorsBushaw, Neal (Author) / Kettle, Nathan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129569-Thumbnail Image.png
Description

In 1961, the Canadian geographer John D. Chapman recognized the rapid growth in demand for inanimate energy and the role geographers could be playing in explaining its patterns and importance in the growing world economy (Chapman, 1961). Fifty years later, Karl Zimmerer (2011) introduced a Special Issue of the Annals

In 1961, the Canadian geographer John D. Chapman recognized the rapid growth in demand for inanimate energy and the role geographers could be playing in explaining its patterns and importance in the growing world economy (Chapman, 1961). Fifty years later, Karl Zimmerer (2011) introduced a Special Issue of the Annals of the Association of American Geographers by noting that not only had Chapman’s prediction come true but that geographers were studying even a wider spectrum of energy challenges than Chapman could ever have imagined (see e.g. Dorian et al., 2006; Florini, Sovaccol, 2009).

ContributorsFrantal, Bohumil (Author) / Pasqualetti, Martin (Author) / Van der Horst, Dan (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129570-Thumbnail Image.png
Description

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region in the Sun Corridor of Arizona. We use object-based image analysis to map six land-use types from ASTER imagery, and then compare this with two per-pixel classifications. Our results show that a single segmentation, combined with intermediary classifications and merging, morphing, and growing image-objects, can lead to an accurate land-use map that is capable of utilizing both spatial and spectral information. We also employ a moving-window diversity assessment to help with analysis and improve post-classification modifications.

ContributorsGalletti, Christopher (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129576-Thumbnail Image.png
Description

National immigration policy meets the realities of unauthorized immigration at the local level, often in ways undesired by residents, as exemplified by the dramatic rise of local anti-immigrant legislation in U.S. states and municipalities. Scholars have studied why some states and municipalities, but not others, engage in immigration policy making.

National immigration policy meets the realities of unauthorized immigration at the local level, often in ways undesired by residents, as exemplified by the dramatic rise of local anti-immigrant legislation in U.S. states and municipalities. Scholars have studied why some states and municipalities, but not others, engage in immigration policy making. Such research is not designed, however, to evaluate how the basic structure of U.S. government facilitates and shapes local protest. To probe that issue, we compare Chiapas, Mexico and Arizona, USA, both peripheral areas significantly affected by unauthorized immigration and national policies designed to control it. We find that the open texture of U.S. federalism facilitates local activism, while Mexico's more centralized government does not. Activists within both states are similar, however, in deploying law creatively to critique national policy, a reminder of the growing worldwide significance of legal pluralism and legal consciousness in the politics of protest.

Created2014-09-01
129580-Thumbnail Image.png
Description

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

ContributorsYang, Haibing (Author) / Zhang, Xiao (Author) / Gaxiola, Roberto (Author) / Xu, Guohua (Author) / Peer, Wendy Ann (Author) / Murphy, Angus S. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129582-Thumbnail Image.png
Description

Age-related differences in susceptibility to infectious disease are known from a wide variety of plant and animal taxonomic groups. For example, the immature immune systems of young vertebrates, along with limited prior exposure to pathogens and behavioral factors, can place juveniles at greater risk of acquiring and succumbing to a

Age-related differences in susceptibility to infectious disease are known from a wide variety of plant and animal taxonomic groups. For example, the immature immune systems of young vertebrates, along with limited prior exposure to pathogens and behavioral factors, can place juveniles at greater risk of acquiring and succumbing to a pathogen. We studied the ontogenetic susceptibility of terrestrial direct-developing frogs (Eleutherodactylus coqui) to the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which is responsible for the decline of amphibian species worldwide. By exposing juvenile and adult frogs to the same dose and strain of Bd, we uncovered ontogenetic differences in susceptibility. Froglets exposed to the pathogen had significantly lower survival rates compared with control froglets, while adult frogs largely cleared infection and had survival rates indistinguishable from control frogs, even when exposed to a much higher dose of Bd. The high disease-induced mortality rate of juveniles may explain ongoing population declines in eastern Puerto Rico, where Bd is endemic and juveniles experience higher prevalence and infection intensity compared to adults. Our results have important implications for understanding and modeling the decline, possibly to extinction, of amphibian populations and species.

ContributorsLanghammer, Penny (Author) / Burrowes, Patricia A. (Author) / Lips, Karen R. (Author) / Bryant, Anna B. (Author) / Collins, James (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129583-Thumbnail Image.png
Description

In situ multianvil press (MAP) studies have reported that the depth and the Clapeyron slope of the postspinel boundary are significantly less than those of the 660 km discontinuity inferred from seismic studies. These results have raised questions about whether the postspinel transition is associated with the discontinuity. We determined

In situ multianvil press (MAP) studies have reported that the depth and the Clapeyron slope of the postspinel boundary are significantly less than those of the 660 km discontinuity inferred from seismic studies. These results have raised questions about whether the postspinel transition is associated with the discontinuity. We determined the postspinel transition in pyrolitic compositions in the laser-heated diamond anvil cell (LHDAC) combined with in situ synchrotron X-ray diffraction. The Clapeyron slope was determined to be −2.5 ± 0.4MPa/K and did not vary significantly with compositions and used pressure scales. Using Pt scales, our data indicate that the postspinel transition occurs in pyrolitic compositions at 23.6–24.5GPa (1850K). The transition pressure and slope are consistent with the depth and topography of the 660 km discontinuity. Our data reveal that inaccuracy in pressure scales alone cannot explain the discrepancy and technical differences between MAP and LHDAC contribute significantly to the discrepancy.

ContributorsYe, Yu (Author) / Gu, Chen (Author) / Shim, Sang-Heon (Author) / Meng, Yue (Author) / Prakapenka, Vitali (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-16