This growing collection consists of scholarly works authored by ASU-affiliated faculty, staff, and community members, and it contains many open access articles. ASU-affiliated authors are encouraged to Share Your Work in KEEP.

Displaying 21 - 30 of 821
Filtering by

Clear all filters

129570-Thumbnail Image.png
Description

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region

Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region in the Sun Corridor of Arizona. We use object-based image analysis to map six land-use types from ASTER imagery, and then compare this with two per-pixel classifications. Our results show that a single segmentation, combined with intermediary classifications and merging, morphing, and growing image-objects, can lead to an accurate land-use map that is capable of utilizing both spatial and spectral information. We also employ a moving-window diversity assessment to help with analysis and improve post-classification modifications.

ContributorsGalletti, Christopher (Author) / Myint, Soe (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
Description

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine-scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross-ecosystem moisture gradient (CEMG) of all four ecosystems considered together.

An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.

ContributorsSylvain, Zachary A. (Author) / Wall, Diana H. (Author) / Cherwin, Karie L. (Author) / Peters, Debra P. C. (Author) / Reichmann, Lara G. (Author) / Sala, Osvaldo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
129576-Thumbnail Image.png
Description

National immigration policy meets the realities of unauthorized immigration at the local level, often in ways undesired by residents, as exemplified by the dramatic rise of local anti-immigrant legislation in U.S. states and municipalities. Scholars have studied why some states and municipalities, but not others, engage in immigration policy making.

National immigration policy meets the realities of unauthorized immigration at the local level, often in ways undesired by residents, as exemplified by the dramatic rise of local anti-immigrant legislation in U.S. states and municipalities. Scholars have studied why some states and municipalities, but not others, engage in immigration policy making. Such research is not designed, however, to evaluate how the basic structure of U.S. government facilitates and shapes local protest. To probe that issue, we compare Chiapas, Mexico and Arizona, USA, both peripheral areas significantly affected by unauthorized immigration and national policies designed to control it. We find that the open texture of U.S. federalism facilitates local activism, while Mexico's more centralized government does not. Activists within both states are similar, however, in deploying law creatively to critique national policy, a reminder of the growing worldwide significance of legal pluralism and legal consciousness in the politics of protest.

Created2014-09-01
129580-Thumbnail Image.png
Description

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass

Phosphorus (P), an element required for plant growth, fruit set, fruit development, and fruit ripening, can be deficient or unavailable in agricultural soils. Previously, it was shown that over-expression of a proton-pyrophosphatase gene AVP1/AVP1D (AVP1DOX) in Arabidopsis, rice, and tomato resulted in the enhancement of root branching and overall mass with the result of increased mineral P acquisition. However, although AVP1 over-expression also increased shoot biomass in Arabidopsis, this effect was not observed in tomato under phosphate-sufficient conditions. AVP1DOX tomato plants exhibited increased rootward auxin transport and root acidification compared with control plants. AVP1DOX tomato plants were analysed in detail under limiting P conditions in greenhouse and field trials. AVP1DOX plants produced 25% (P=0.001) more marketable ripened fruit per plant under P-deficient conditions compared with the controls. Further, under low phosphate conditions, AVP1DOX plants displayed increased phosphate transport from leaf (source) to fruit (sink) compared to controls. AVP1DOX plants also showed an 11% increase in transplant survival (P<0.01) in both greenhouse and field trials compared with the control plants. These results suggest that selection of tomato cultivars for increased proton pyrophosphatase gene expression could be useful when selecting for cultivars to be grown on marginal soils.

ContributorsYang, Haibing (Author) / Zhang, Xiao (Author) / Gaxiola, Roberto (Author) / Xu, Guohua (Author) / Peer, Wendy Ann (Author) / Murphy, Angus S. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129582-Thumbnail Image.png
Description

Age-related differences in susceptibility to infectious disease are known from a wide variety of plant and animal taxonomic groups. For example, the immature immune systems of young vertebrates, along with limited prior exposure to pathogens and behavioral factors, can place juveniles at greater risk of acquiring and succumbing to a

Age-related differences in susceptibility to infectious disease are known from a wide variety of plant and animal taxonomic groups. For example, the immature immune systems of young vertebrates, along with limited prior exposure to pathogens and behavioral factors, can place juveniles at greater risk of acquiring and succumbing to a pathogen. We studied the ontogenetic susceptibility of terrestrial direct-developing frogs (Eleutherodactylus coqui) to the fungal pathogen, Batrachochytrium dendrobatidis (Bd), which is responsible for the decline of amphibian species worldwide. By exposing juvenile and adult frogs to the same dose and strain of Bd, we uncovered ontogenetic differences in susceptibility. Froglets exposed to the pathogen had significantly lower survival rates compared with control froglets, while adult frogs largely cleared infection and had survival rates indistinguishable from control frogs, even when exposed to a much higher dose of Bd. The high disease-induced mortality rate of juveniles may explain ongoing population declines in eastern Puerto Rico, where Bd is endemic and juveniles experience higher prevalence and infection intensity compared to adults. Our results have important implications for understanding and modeling the decline, possibly to extinction, of amphibian populations and species.

ContributorsLanghammer, Penny (Author) / Burrowes, Patricia A. (Author) / Lips, Karen R. (Author) / Bryant, Anna B. (Author) / Collins, James (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129583-Thumbnail Image.png
Description

In situ multianvil press (MAP) studies have reported that the depth and the Clapeyron slope of the postspinel boundary are significantly less than those of the 660 km discontinuity inferred from seismic studies. These results have raised questions about whether the postspinel transition is associated with the discontinuity. We determined

In situ multianvil press (MAP) studies have reported that the depth and the Clapeyron slope of the postspinel boundary are significantly less than those of the 660 km discontinuity inferred from seismic studies. These results have raised questions about whether the postspinel transition is associated with the discontinuity. We determined the postspinel transition in pyrolitic compositions in the laser-heated diamond anvil cell (LHDAC) combined with in situ synchrotron X-ray diffraction. The Clapeyron slope was determined to be −2.5 ± 0.4MPa/K and did not vary significantly with compositions and used pressure scales. Using Pt scales, our data indicate that the postspinel transition occurs in pyrolitic compositions at 23.6–24.5GPa (1850K). The transition pressure and slope are consistent with the depth and topography of the 660 km discontinuity. Our data reveal that inaccuracy in pressure scales alone cannot explain the discrepancy and technical differences between MAP and LHDAC contribute significantly to the discrepancy.

ContributorsYe, Yu (Author) / Gu, Chen (Author) / Shim, Sang-Heon (Author) / Meng, Yue (Author) / Prakapenka, Vitali (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-06-16
Description

The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in

The emergence of the disease chytridiomycosis caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in dramatic global amphibian declines. Although many species have undergone catastrophic declines and/or extinctions, others appear to be unaffected or persist at reduced frequencies after Bd outbreaks. The reasons behind this variance in disease outcomes are poorly understood: differences in host immune responses have been proposed, yet previous studies suggest a lack of robust immune responses to Bd in susceptible species. Here, we sequenced transcriptomes from clutch-mates of a highly susceptible amphibian, Atelopus zeteki, with different infection histories. We found significant changes in expression of numerous genes involved in innate and inflammatory responses in infected frogs despite high susceptibility to chytridiomycosis.

We show evidence of acquired immune responses generated against Bd, including increased expression of immunoglobulins and major histocompatibility complex genes. In addition, fungal-killing genes had significantly greater expression in frogs previously exposed to Bd compared with Bd-naïve frogs, including chitinase and serine-type proteases. However, our results appear to confirm recent in vitro evidence of immune suppression by Bd, demonstrated by decreased expression of lymphocyte genes in the spleen of infected compared with control frogs. We propose susceptibility to chytridiomycosis is not due to lack of Bd-specific immune responses but instead is caused by failure of those responses to be effective. Ineffective immune pathway activation and timing of antibody production are discussed as potential mechanisms. However, in light of our findings, suppression of key immune responses by Bd is likely an important factor in the lethality of this fungus.

ContributorsEllison, Amy R. (Author) / Savage, Anna E. (Author) / DiRenzo, Grace V. (Author) / Langhammer, Penny (Author) / Lips, Karen R. (Author) / Zamudio, Kelly R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01
129585-Thumbnail Image.png
Description

Consider tuples (K1,…,Kr) of separable algebras over a common local or global number field F F, with the Ki related to each other by specified resolvent constructions. Under the assumption that all ramification is tame, simple group-theoretic calculations give best possible divisibility relations among the discriminants of Ki∕F. We show

Consider tuples (K1,…,Kr) of separable algebras over a common local or global number field F F, with the Ki related to each other by specified resolvent constructions. Under the assumption that all ramification is tame, simple group-theoretic calculations give best possible divisibility relations among the discriminants of Ki∕F. We show that for many resolvent constructions, these divisibility relations continue to hold even in the presence of wild ramification.

ContributorsJones, John (Author) / Roberts, David P. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129587-Thumbnail Image.png
Description

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various

Nonuniform Fourier data are routinely collected in applications such as magnetic resonance imaging, synthetic aperture radar, and synthetic imaging in radio astronomy. To acquire a fast reconstruction that does not require an online inverse process, the nonuniform fast Fourier transform (NFFT), also called convolutional gridding, is frequently employed. While various investigations have led to improvements in accuracy, efficiency, and robustness of the NFFT, not much attention has been paid to the fundamental analysis of the scheme, and in particular its convergence properties. This paper analyzes the convergence of the NFFT by casting it as a Fourier frame approximation. In so doing, we are able to design parameters for the method that satisfy conditions for numerical convergence. Our so-called frame theoretic convolutional gridding algorithm can also be applied to detect features (such as edges) from nonuniform Fourier samples of piecewise smooth functions.

ContributorsGelb, Anne (Author) / Song, Guohui (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129588-Thumbnail Image.png
Description

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation

A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations.

We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data.

Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales.

ContributorsCiais, P. (Author) / Dolman, A. J. (Author) / Bombelli, A. (Author) / Duren, R. (Author) / Peregon, A. (Author) / Rayner, P. J. (Author) / Miller, C. (Author) / Gobron, N. (Author) / Kinderman, G. (Author) / Marland, G. (Author) / Gruber, N. (Author) / Chevallier, F. (Author) / Andres, R. J. (Author) / Balsamo, G. (Author) / Bopp, L. (Author) / Breon, F. -M. (Author) / Broquet, G. (Author) / Dargaville, R. (Author) / Battin, T. J. (Author) / Borges, A. (Author) / Bovensmann, H. (Author) / Buchwitz, M. (Author) / Butler, J. (Author) / Canadell, J. G. (Author) / Cook, R. B. (Author) / DeFries, R. (Author) / Engelen, R. (Author) / Gurney, Kevin (Author) / Heinze, C. (Author) / Heimann, M. (Author) / Held, A. (Author) / Henry, M. (Author) / Law, B. (Author) / Luyssaert, S. (Author) / Miller, J. (Author) / Moriyama, T. (Author) / Moulin, C. (Author) / Myneni, R. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30