Matching Items (54)
151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
ContributorsQian, Dajun (Author) / Zhang, Junshan (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151982-Thumbnail Image.png
Description
The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.
ContributorsZhang, Rui (Author) / Zhang, Yanchao (Thesis advisor) / Duman, Tolga Mete (Committee member) / Xue, Guoliang (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
152383-Thumbnail Image.png
Description
Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric

Data centers connect a larger number of servers requiring IO and switches with low power and delay. Virtualization of IO and network is crucial for these servers, which run virtual processes for computing, storage, and apps. We propose using the PCI Express (PCIe) protocol and a new PCIe switch fabric for IO and switch virtualization. The switch fabric has little data buffering, allowing up to 512 physical 10 Gb/s PCIe2.0 lanes to be connected via a switch fabric. The switch is scalable with adapters running multiple adaptation protocols, such as Ethernet over PCIe, PCIe over Internet, or FibreChannel over Ethernet. Such adaptation protocols allow integration of IO often required for disjoint datacenter applications such as storage and networking. The novel switch fabric based on space-time carrier sensing facilitates high bandwidth, low power, and low delay multi-protocol switching. To achieve Terabit switching, both time (high transmission speed) and space (multi-stage interconnection network) technologies are required. In this paper, we present the design of an up to 256 lanes Clos-network of multistage crossbar switch fabric for PCIe system. The switch core consists of 48 16x16 crossbar sub-switches. We also propose a new output contention resolution algorithm utilizing an out-of-band protocol of Request-To-Send (RTS), Clear-To-Send (CTS) before sending PCIe packets through the switch fabric. Preliminary power and delay estimates are provided.
ContributorsLuo, Haojun (Author) / Hui, Joseph (Thesis advisor) / Song, Hongjiang (Committee member) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2013
150639-Thumbnail Image.png
Description
A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to be considered. An overview of the proposed Ethernet switch architecture is presented. The switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet switch utilizes a portion of the Quality of Service provided with PCI Express to ensure guaranteed transmission. The thesis presents a method of adapting Ethernet packets over the PCI Express transaction layer packets. The adaptor card is divided into the following two parts: receive path and transmit path. The commercial off-the-shelf Media Access Control (MAC) core and PCI Express endpoint core are used in the adaptor. The output address lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express port addresses. Different methods of providing Quality of Service in the adaptor card include classification, flow control, and error detection with the cooperation of the PCI Express switch are discussed. The adaptor logic is implemented in Verilog hardware description language. Functional simulation is conducted in ModelSim. The simulation results show that the Ethernet packets are able to be converted to the corresponding PCI Express transaction layer packets based on their destination MAC addresses. The transaction layer packets are then converted back to Ethernet packets. A functionally correct FPGA logic of the adaptor card is ready for implementation on real FPGA development board.
ContributorsChen, Caiyi (Author) / Hui, Joseph (Thesis advisor) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
150839-Thumbnail Image.png
Description
Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified against standard off the shelf software, the results of the tests are discussed in this document. The user-interface is very simple and doesn't require many inputs from the user other than during the initial setting when they have to enter their personal information for the records. The m-health application can be used by doctors as well as by patients. The response of the application is very quick and hence the patients need not wait for a long time to see the results. The environmental monitoring device has a real-time plot displayed on the screen of the smartphone showing concentrations of total volatile organic compounds and airborne particle count in the environment at the location of the device. The programming was done with Microsoft Visual Studio and was written on VB.NET platform. On the applications, the smartphone receives data as raw binary bytes from the device via Bluetooth and this data is processed to obtain the final result. The final result is the concentration of Nitric Oxide in ppb in the Asthma Analyzer device. In the environmental monitoring device, the final result is the concentration of total Volatile Organic Compounds and the count of airborne Particles.
ContributorsGanesan, Srisivapriya (Author) / Tao, Nongjian (Thesis advisor) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
151055-Thumbnail Image.png
Description
Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it is not clear the exact mechanism of air pollutants and its health effect. So it is difficult for the health centers to advise people how to prevent the air pollutant related diseases. It is of vital importance for both the agencies and the health centers to have a better understanding of the air pollution. Based on these needs, it is crucial to establish mobile health sensors for personal exposure assessment. Here, two sensing principles are illustrated: the tuning fork platform and the colorimetric platform. Mobile devices based on these principles have been built. The detections of ozone, NOX, carbon monoxide and formaldehyde have been shown. An integrated device of nitrogen dioxide and carbon monoxide is introduced. Fan is used for sample delivery instead pump and valves to reduce the size, cost and power consumption. Finally, the future work is discussed.
ContributorsWang, Rui (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Zhang, Yanchao (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2012
151059-Thumbnail Image.png
Description
With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or

With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or OSI model, which in turn increases the bandwidth in the upper layers. The work in this thesis covers general description of basic DBA Schemes and mathematical derivations that have been established in research. We introduce a Novel Survey Topology that classifes DBA schemes based on their functionality. The novel perspective of classification will be useful in determining which scheme will best suit consumer's needs. We classify DBA as Direct, Intelligent and Predictive back on its computation method and we are able to qualitatively describe their delay and throughput bounds. Also we describe a recently developed DBA Scheme, Multi-thread polling(MTP) used in LRPON and describes the different viewpoints and issues and consequently introduce a novel technique Parallel Polling that overcomes most of issues faced in MTP and that promises better delay performance for LRPON.
ContributorsMercian, Anu (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
190798-Thumbnail Image.png
Description
With the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions of Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the artificial intelligence (AI) frontiers to the network edge

With the proliferation of mobile computing and Internet-of-Things (IoT), billions of mobile and IoT devices are connected to the Internet, generating zillions of Bytes of data at the network edge. Driving by this trend, there is an urgent need to push the artificial intelligence (AI) frontiers to the network edge to unleash the potential of the edge big data fully. This dissertation aims to comprehensively study collaborative learning and optimization algorithms to build a foundation of edge intelligence. Under this common theme, this dissertation is broadly organized into three parts. The first part of this study focuses on model learning with limited data and limited computing capability at the network edge. A global model initialization is first obtained by running federated learning (FL) across many edge devices, based on which a semi-supervised algorithm is devised for an edge device to carry out quick adaptation, aiming to address the insufficiency of labeled data and to learn a personalized model efficiently. In the second part of this study, collaborative learning between the edge and the cloud is studied to achieve real-time edge intelligence. More specifically, a distributionally robust optimization (DRO) approach is proposed to enable the synergy between local data processing and cloud knowledge transfer. Two attractive uncertainty models are investigated corresponding to the cloud knowledge transfer: the distribution uncertainty set based on the cloud data distribution and the prior distribution of the edge model conditioned on the cloud model. Collaborative learning algorithms are developed along this line. The final part focuses on developing an offline model-based safe Inverse Reinforcement Learning (IRL) algorithm for connected Autonomous Vehicles (AVs). A reward penalty is introduced to penalize unsafe states, and a risk-measure-based approach is proposed to mitigate the model uncertainty introduced by offline training. The experimental results demonstrate the improvement of the proposed algorithm over the existing baselines in terms of cumulative rewards.
ContributorsZhang, Zhaofeng (Author) / Zhang, Junshan (Thesis advisor) / Zhang, Yanchao (Thesis advisor) / Dasarathy, Gautam (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2023
189245-Thumbnail Image.png
Description
Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms

Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the widespread deployment of Internet-of-Things (IoT) devices in smart homes. However, the spate of cyber attacks exploiting the vulnerabilities and weak security management of smart home IoT devices have highlighted the urgency and challenges of designing efficient mechanisms for detecting, analyzing, and mitigating security threats towards them. In this dissertation, I seek to address the security and privacy issues of smart home IoT devices from the perspectives of traffic measurement, pattern recognition, and security applications. I first propose an efficient multidimensional smart home network traffic measurement framework, which enables me to deeply understand the smart home IoT ecosystem and detect various vulnerabilities and flaws. I further design intelligent schemes to efficiently extract security-related IoT device event and user activity patterns from the encrypted smart home network traffic. Based on the knowledge of how smart home operates, different systems for securing smart home networks are proposed and implemented, including abnormal network traffic detection across multiple IoT networking protocol layers, smart home safety monitoring with extracted spatial information about IoT device events, and system-level IoT vulnerability analysis and network hardening.
ContributorsWan, Yinxin (Author) / Xue, Guoliang (Thesis advisor) / Xu, Kuai (Thesis advisor) / Yang, Yezhou (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023