Matching Items (91)
149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
152265-Thumbnail Image.png
Description
Infertility has become an increasing problem in developed countries and in many cases can be attributed to compromised sperm quality. Assessment of male fertility typically utilizes semen analysis which mainly examines sperm morphology, however many males whose sperm appear normal are sub- or infertile, suggesting that sperm from these males

Infertility has become an increasing problem in developed countries and in many cases can be attributed to compromised sperm quality. Assessment of male fertility typically utilizes semen analysis which mainly examines sperm morphology, however many males whose sperm appear normal are sub- or infertile, suggesting that sperm from these males may be deficient in a protein or suite of proteins. To date, very little is known about the composition of sperm or the complex maturation process that confers motility and fertilization competency to sperm. Chapter 1 discusses the use of whole cell mass spectrometry to identify 1247 proteins comprising the Rhesus macaque (Macaca mulatta) sperm proteome, a commonly used model of human reproduction. This study provides a more robust proxy of human sperm composition than was previously available and facilitates studies of sperm using the rhesus macaque as a model. Chapters 2 & 3 provide a systems level overview of changes in sperm proteome composition that occurs during epididymal transit. Chapter 2 reports the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. Chapter 3 reports the sperm proteome from four distinct segments of the Rhesus macaque epididymis, including the caput, proximal corpus, distal corpus and cauda, identifying 1951, 2014, 1764 and 1423 proteins respectively. These studies identify a number of proteins that are added and removed from sperm during epididymal transit which likely play an important role in the sperm maturation process. To date no comparative evolutionary studies of sperm proteomes have been undertaken. Chapter 4 compares four mammalian sperm proteomes including the human, macaque, mouse and rat. This study identified 98 proteins common to all four sperm proteomes, 82 primate and 90 rodent lineage-specific proteins and 494, 467, 566, and 193 species specific proteins in the human, macaque, mouse and rat sperm proteomes respectively and discusses how differences in sperm composition may ultimately lead to functional differences across species. Finally, chapter 5 uses sperm proteome data to inform the preliminary design of a rodent contraceptive vaccine delivered orally using recombinant attenuated Salmonella vaccine vectors.
ContributorsSkerget, Sheri Jo (Author) / Karr, Timothy L. (Thesis advisor) / Lake, Douglas (Committee member) / Petritis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152035-Thumbnail Image.png
Description
Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike

Coccidioidomycosis, also known as Valley Fever, is a disease caused by the dimorphic soil-dwelling fungus, Coccidioides sp. Coccidioidomycosis is difficult to diagnose because symptoms are similar to community-acquired pneumonia. Current diagnostic tests rely on antibody responses, but immune responses can be delayed and aberrant, resulting in false negative diagnoses. Unlike serology, detection of coccidioidal proteins or other fungal components in blood could distinguish valley fever from other pulmonary infections and provide a definitive diagnosis. Using mass spectrometry (LC-MS/MS) we examined the plasma peptidome from patients with serologically confirmed coccidioidomycosis. Mass spectra were searched using the protein database from the Coccidioides species, generated and annotated by the Broad Institute. 15 of 20 patients with serologically confirmed coccidioidomycosis demonstrated the presence of a peptide in plasma, "PGLDSKSLACTFSQV" (PGLD). The peptide is derived from an open reading frame from a "conserved hypothetical protein" annotated with 2 exons, and to date, found only in the C. posadasii strain Silviera RMSCC 3488 genomic sequence. In this thesis work, cDNA sequence analysis from polyadenylated RNA confirms the peptide sequence and genomic location of the peptide, but does not indicate that the intron in the gene prediction of C. posadasii strain Silviera RMSCC 3488 is present. A monoclonal antibody generated against the peptide bound to a 16kDa protein in T27K coccidioidal lysate. Detecting components of the fungus plasma could be a useful diagnostic tool, especially when serology does not provide a definitive diagnosis.
ContributorsDuffy, Stacy Leigh (Author) / Lake, Douglas (Thesis advisor) / Magee, Dewey Mitch (Committee member) / Antwi, Kwasi (Committee member) / Arizona State University (Publisher)
Created2013
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
136077-Thumbnail Image.png
Description
Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a

Background: Coccidioidomycosis (Valley Fever) is a respiratory disease that is caused by the soil-dwelling fungi Coccidioides immitis and Coccidioides posadasii. Because fungal glycosylation patterns are distinct from mammalian glycosylation patterns, we hypothesized that certain lectins (carbohydrate-binding proteins) might have differential binding properties to coccidioidal glycoproteins, and therefore serve as a tool for the purification and characterization of these glycoproteins from patient specimens. Materials and Methods: To identify potential Coccidioides-binding lectins, lectin-based immunohistochemistry was performed using a panel of 21 lectins on lung tissue from human patients infected with Coccidioides. Enzyme-Linked Immunosorbent Assays (ELISAs) were used to confirm and test candidate Coccidioides-binding lectins for their ability to bind to proteins from antigen preparations of laboratory-grown Coccidioides. Inhibition IHC and ELISAs were used to confirm binding properties of these lectins. SDS-PAGE and mass spectrometry were performed on eluates from coccidioidal antigen preparations run through lectin-affinity chromatography columns to characterize and identify lectin-binding coccidioidal glycoproteins. Results: Two GlcNAc-binding lectins, GSLII and sWGA, bound specifically to spherules and endospores in infected human lung tissue, and not to adjacent lung tissue. The binding of these lectins to both Coccidioides proteins in lung tissue and to coccidioidal antigen preparations was confirmed to have lectin-like characteristics. SDS-PAGE analysis of eluates from lectin-affinity chromatography demonstrated that GSLII and sWGA bind to coccidioidal glycoproteins. Mass spectrometric identification of the top ten lectin affinity-purified glycoproteins demonstrated that GSLII and sWGA share affinity to a common set of coccidioidal glycoproteins. Conclusion: This is the first report of lectins that bind specifically to Coccidioides spherules and endospores in infected humans. These lectins may have the potential to serve as tools for a better method of detection and diagnosis of Valley Fever.
ContributorsChowdhury, Yasmynn (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Magee, Mitchell (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05
137667-Thumbnail Image.png
Description
The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member

The long-term survival of patients with glioblastoma multiforme is compromised by the tumor's proclivity for local invasion into the surrounding normal brain. These invasive cells escape surgery and display resistance to chemotherapeutic- and radiation-induced apoptosis. We have previously shown that tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor superfamily, can stimulate glioma cell invasion and survival via binding to the fibroblast growth factor-inducible 14 (Fn14) receptor and subsequent activation of the Rac1/NF-kappaB pathway. In addition, we have reported previously that Fn14 is expressed at high levels in migrating glioma cells in vitro and invading glioma cells in vivo. Here we demonstrate that TWEAK can act as a chemotactic factor for glioma cells, a potential process to drive cell invasion into the surrounding brain tissue. Specifically, we detected a chemotactic migration of glioma cells to the concentration gradient of TWEAK. Since Src family kinases (SFK) have been implicated in chemotaxis, we next determined whether TWEAK:Fn14 engagement activated these cytoplasmic tyrosine kinases. Our data shows that TWEAK stimulation of glioma cells results in a rapid phosphorylation of the SFK member Lyn as determined by multiplex Luminex assay and verified by immunoprecipitation. Immunodepletion of Lyn by siRNA oligonucleotides suppressed the chemoattractive effect of TWEAK on glioma cells. We hypothesize that TWEAK secretion by cells present in the glioma microenvironment induce invasion of glioma cells into the brain parenchyma. Understanding the function and signaling of the TWEAK-Fn14 ligand-receptor system may lead to development of novel therapies to therapeutically target invasive glioma cells.
ContributorsJameson, Nathan Meade (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Tran, Nhan (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137783-Thumbnail Image.png
Description
Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens are potential diagnostic biomarkers of HPV-associated OPC (HPV OPC). A custom multiplexed bead array assay was used to detect Abs

Oropharyngeal cancer (OPC) is the world's sixth most common cancer and in many cases is associated with infection with human papillomavirus (HPV) type 16. Antibodies (Abs) to HPV16 viral antigens are potential diagnostic biomarkers of HPV-associated OPC (HPV OPC). A custom multiplexed bead array assay was used to detect Abs to HPV16 antigens E1, CE2, NE2, E4, E5, E6, E7, L1, and L2. Following extensive optimization of the assay, these genes were expressed as GST-fusion proteins and captured onto anti-GST magnetic beads. Serum was obtained from 256 OPC patients at the time of diagnosis and from 78 healthy controls. The median fluorescent intensity (MFI) was determined for each antigen and ratios of MFI to control GST-fusion protein were determined for each serum sample. Cutoff values were set as the mean + 3 SD of the MFIs of healthy controls and p-values were calculated using Wilcoxon unpaired and Fisher's exact test. Results of this experiment showed that HPV16 E1, CE2, NE2, E4, E6, and E7 Ab levels were elevated in OPC patients compared to controls (p<0.001), as were Ab levels to L1 (p = 0.013) and L2 (p = 0.023), per Fischer's exact test. Abs to CE2, NE2, E6, and E7 were identified as a potential biomarker panel for early detection of HPV OPC. For the 111 patients with known HPV+ tumors as measured by tumor PCR of E6 and/or E7, this assay had a sensitivity of 90% and specificity of 87% (AUC = 0.96). From these results, we conclude that custom bead array assays can be used to detect HPV16 Abs in patient sera, and we have identified a 4-Ab biomarker panel for the early detection of HPV OPC.
ContributorsGoulder, Alison Leigh (Author) / Anderson, Karen (Thesis director) / Lake, Douglas (Committee member) / Cheng, Julia (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2013-05
137656-Thumbnail Image.png
Description
Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella

Cancer is one of the leading causes of death in the world and represents a tremendous burden on patients, families and societies. S. Typhimurium strains are specifically attracted to compounds produced by cancer cells and could overcome the traditional therapeutic barrier. However, a major problem with using live attenuated Salmonella as anti-cancer agents is their toxicity at the dose required for therapeutic efficacy, but reducing the dose results in diminished efficacy. In this project, we explored novel means to reduce the toxicity of the recombinant attenuated Salmonella by genetically engineering those virulence factors to facilitate maximal colonization of tumor tissues and reduced fitness in normal tissues. We have constructed two sets of Salmonella strains. In the first set, each targeted gene was knocked out by deletion of the gene. In the second set, the predicted promoter region of each gene was replaced with a rhamnose-regulated promoter, which will cease the synthesis of these genes in vivo, a rhamnose-free environment.
ContributorsBenson, Lee Samuel (Author) / Kong, Wei (Thesis director) / Martin, Thomas (Committee member) / Lake, Douglas (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Center for Infectious Diseases and Vaccinology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
DescriptionA novel and unconventional approach for delivering a eukaryotic apoptosis factor, TNF-related apoptosis-inducing ligand (TRAIL), to cancer cells within and around necrotizing tumors by utilizing a S. Typhimurium purine requiring auxotroph as a biological vector to develop two anticancer therapies with multiple modality and broad economic feasibility.
ContributorsKoons, Andrew (Author) / Curtiss, Roy (Thesis director) / Lake, Douglas (Committee member) / Janthakahalli, Nagaraj Vinay (Committee member) / Barrett, The Honors College (Contributor)
Created2013-12