Matching Items (3)
Filtering by

Clear all filters

131839-Thumbnail Image.png
Description
Phenotypic evolution is an essential topic within the general field of evolution. Theoretically, the outcome of phenotypic evolution may be influenced by factors such as genetic background and the interaction of natural selection and genetic drift. To gain empirical evidence for testing the effects of those factors, we used eight

Phenotypic evolution is an essential topic within the general field of evolution. Theoretically, the outcome of phenotypic evolution may be influenced by factors such as genetic background and the interaction of natural selection and genetic drift. To gain empirical evidence for testing the effects of those factors, we used eight long-term evolved Escherichia coli populations as a model system. These populations differ in terms of genetic background (different mutation rates) as well as bottleneck size (small- and large-magnitude). Specifically, we used a plate reader to measure three growth-related traits: maximum growth rate (umax), carrying capacity (Kc), and lag time (Lt) for 40 clones within each population. For each trait we quantified the change in mean per generation, the change in variance per generation, and the correlation coefficient between pairs of traits. Interestingly, we found that the small and large bottleneck populations of one background displayed clear, distinguishing trends that were not present within the populations of the other background. This leads to the conclusion that the influence of selection and drift on a population’s phenotypic outcomes is itself influenced by the genetic background of that population. Additionally, we found a strong positive correlation between umax and Kc within each of the high-mutation populations that was not consistent with our neutral expectation. However, the other two pairs did not exhibit a similar pattern. Our results provide a novel understanding in the relationship between the evolution of E. coli growth-related phenotypes and the population-genetic environment.
ContributorsGonzales, Jadon (Co-author, Co-author) / Lynch, Michael (Thesis director) / Ho, Wei-Chin (Committee member) / Geiler-Samerotte, Kerry (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164534-Thumbnail Image.png
Description
Mutation rate is the rate of appearance for mutations to occur in a living organism. Studying and quantifying mutation rates and their evolution is important because mutations are the ultimate source of genetic variation and one of the reasons why evolution occurs. Much of the current research has investigated the

Mutation rate is the rate of appearance for mutations to occur in a living organism. Studying and quantifying mutation rates and their evolution is important because mutations are the ultimate source of genetic variation and one of the reasons why evolution occurs. Much of the current research has investigated the mutational rate increase. The evolution of reduced mutation rate, which can be favored by natural selection because the accumulation of too many mutations can be deleterious and result in death, is less studied. Therefore, this study will be focused on antimutators, which are mutations that result in a lowering of the mutation rate. Using Escherichia coli K-12 str. MG1655 as a model system, the effects and reasons for how MMR- background E. coli evolves lower mutation rates were studied. Here we show that the candidate antimutator in dnaE lowers the mutation rate in an experimentally evolved population of E. coli with MMR- background by using a mutation rate assay to demonstrate the difference between populations with and without the antimutator candidate. The results also suggest the importance of an antimutator for populational survival.
ContributorsGraham, Logan (Author) / Ho, Wei-Chin (Thesis director) / Lynch, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164737-Thumbnail Image.png
Description
Different populations of evolved E.coli and their ancestors were grown in a variety of single amino acid environments to determine their ability to use that amino acid as a carbon source. Some evolved lines were able to grow in amino acids that their ancestors weren't able to. The source of

Different populations of evolved E.coli and their ancestors were grown in a variety of single amino acid environments to determine their ability to use that amino acid as a carbon source. Some evolved lines were able to grow in amino acids that their ancestors weren't able to. The source of this change in amino acid growth was investigated by testing uptake, searching for candidate mutations, and comparing growth rates of populations with and without certain mutations.
ContributorsKing, Lily (Author) / Ho, Wei-Chin (Thesis director) / Lynch, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05