Matching Items (97)
149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
136091-Thumbnail Image.png
Description
Some of the most talented, innovative, and experimental artists are students, but they are often discouraged by the price of higher education and lack of scholarship or funding opportunities. Additionally, the art industry has become stagnant. Traditional brick-and-mortar galleries are not willing to represent young, unknown artists. Their overhead is

Some of the most talented, innovative, and experimental artists are students, but they are often discouraged by the price of higher education and lack of scholarship or funding opportunities. Additionally, the art industry has become stagnant. Traditional brick-and-mortar galleries are not willing to represent young, unknown artists. Their overhead is simply too high for risky choices.
The Student Art Project is art patronage for the 21st century—a curated online gallery featuring exceptional student artists. The Student Art Project is a highly curated experience for buyers. Only five artists are featured each month. Buyers are not bombarded with thousands of different products and separate artists “shops”. They can read artists bios and find art they connect with.
Student artists apply through an online form. Once accepted to the program, artists receive a $200 materials stipend to create an exclusive collection of 5-10 pieces. Original artwork and limited edition prints are sold through our website. These collections can potentially fund an entire year of college tuition, a life-changing amount for many students.
Brick-and-mortar galleries typically take 40-60% of the retail price of artwork. The Student Art Project will only take 30%, which we will use to reinvest in future artists. Other art websites, like Etsy, require the artists to ship, invoice, and communicate with customers. For students, this means less time spent in the classroom and less time developing their craft. The Student Art Project handles all business functions for our artists, allowing them to concentrate on what really matters, their education.
ContributorsDangler, Rebecca Leigh (Author) / Trujillo, Rhett (Thesis director) / Coleman, Sean (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / Department of Management (Contributor)
Created2015-05
136108-Thumbnail Image.png
Description
Drought is one of the most pressing issues affecting the future of the standard of living here in Phoenix. With the threat of water rationing and steep price hikes looming on the horizon for water customers in California, the desert southwest, and in drought-stricken communities worldwide, industrial designers are in

Drought is one of the most pressing issues affecting the future of the standard of living here in Phoenix. With the threat of water rationing and steep price hikes looming on the horizon for water customers in California, the desert southwest, and in drought-stricken communities worldwide, industrial designers are in a prime position to help improve the experience of water conservation so that consumers are willing to start taking conscious steps toward rethinking their relationship with water usage.
In a research group, several designers sought to understand the depth and complexity of this highly politicized issue by interviewing a wide variety of stakeholders, including sustainability experts, landscapers, water company executives, small business owners, reservoir forest rangers, and many more. Data synthesis led to the conclusion that residential water use is a lifestyle issue, and the only real way to conserve involves a significant shift in the collective idea of an “ideal” home—lawns, pools, and overwatered landscaping contribute to 70% of all water use by residences in the Phoenix area. The only real way to conserve involves increasing population density and creating communal green spaces.
DR. DISH is a dishwashing device that is meant to fit into the high-density living spaces that are rapidly being built in the face of the massive exodus of people into the world’s cities. To help busy apartment and condominium dwellers conserve water and time, DR. DISH converts a standard kitchen sink into a small dishwasher, which uses significantly less water than hand-washing dishes or rinsing dishes before putting them into a conventional dishwasher. Using advanced filtration technology and a powerful rinse cycle, a load dishes can be cleaned with about 2 gallons of water. Fully automating the dishwashing process also saves the user time and minimizes unpleasant contact with food residue and grease.
This device is meant to have a significant impact upon the water use of households that do not have a dishwasher, or simply do not use their dishwasher. With a low target price point and myriad convenient features, DR. DISH is a high-tech solution that promises water savings at a time when every effort toward conservation is absolutely critical. As we move toward a new era in determining water rights and imposing mandatory restrictions upon each and every person living in affected areas, creating conservation solutions that will be relevant for the lifestyles of the future is especially important, and the agility of designers in coming up with products that quickly cut consumer water consumption will be a key factor in determining whether humanity will be able to adapt to a new era in our relationship with natural resources.
ContributorsMarcinkowski, Margaret Nicole (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / The Design School (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2015-05
136117-Thumbnail Image.png
Description
Fire Shelter Foam Assist is meant as a firefighter's last effort of survival when a wildfire threatens their position. When deployed, it will cover the firefighter as the fire blows over. By reducing the time of deployment and simplifying the process, firefighters will have more time to ensure the area

Fire Shelter Foam Assist is meant as a firefighter's last effort of survival when a wildfire threatens their position. When deployed, it will cover the firefighter as the fire blows over. By reducing the time of deployment and simplifying the process, firefighters will have more time to ensure the area around them is cleared. The Fire Shelter Foam Assist has features that allow it to auto deploy around the firefighter through the use of fire foam retardant. The fire foam retardant inflates the shelter as well as provides an extra layer of protection against the wildfire.
ContributorsSmith, Tori Elizabeth (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / The Design School (Contributor)
Created2015-05
136119-Thumbnail Image.png
Description
After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate

After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate ship, or being in a fantasy castle by captivating children in playtime. The design allows for a frightening experience to become a positive one.
ContributorsHerold, Brittany Ann (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136120-Thumbnail Image.png
Description
I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed

I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed a system of products that improves the user experiences surrounding water. The result is IOW, an intelligent 3-product system that aims to make your water needs & wants smarter & less wasteful.
ContributorsShappee, Christian Kyle (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
Description
The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels

The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels with detachable insoles that will relieve tired feet based on the principle of reflexology. The product integrates traditional flexible insoles with Arduino computing and the result is a functional surface that can ease the pain of the wearer. This paper introduces the product and with it, under-explored opportunities to customize your own high heels at home. Essentially, each consumer will have the ability to personalize and switch out their style without sacrificing comfort. Soon, a consumer will be a designer.
ContributorsNguyen, Nhi N. (Author) / Ingalls, Todd (Thesis director) / Gigantino, Josh (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136135-Thumbnail Image.png
Description
Today, the global fashion industry is valued at $450 billion, and considered one of the most important sectors of the global economy (Global Action Through Fashion, 2015). The term fashion means more than just designing apparel or accessories as the industry encompasses jobs from production to inventory management, merchandising, marketing,

Today, the global fashion industry is valued at $450 billion, and considered one of the most important sectors of the global economy (Global Action Through Fashion, 2015). The term fashion means more than just designing apparel or accessories as the industry encompasses jobs from production to inventory management, merchandising, marketing, production, and retail management. The fashion industry is one of the world’s largest markets as it employs over 75 million people and generates $1.7 trillion in revenue annually (Global Action Through Fashion, 2015). It is a dynamic, fast-paced industry that requires constant innovation ideas and strategic planning.

Chloe Bosmeny and Audree López, senior marketing students at W. P. Carey have created a proposal for W. P. Carey School of Business and Herberger Institute for Design and the Arts to join together to create an interdisciplinary resource for students interested in pursuing a career in fashion. There are three recommendations in the thesis: the implementation of a Fashion Merchandising certificate encompassing both W. P. Carey and Herberger curriculum, ASU joining the Fashion Institute of Technology’s 3+1 program for dual degrees in New York City, and lastly, improving professional development and career recruitment for ASU students interested in fashion.

But why fashion at Arizona State University? Throughout college, Bosmeny and López struggled to gain the background, skills and experience needed to understand the fashion industry. They, like many of their peers, felt that without the credentials of a university-sponsored fashion program, they weren't marketable to employers. These challenges drove Bosmeny and López to advocate for more fashion resources at ASU.
Based on support from student surveys, in-depth interviews with industry professionals, feedback from ASU Alumni and input from ASU’s largest fashion organization, The Business of Fashion Club- there is a strong desire for increased fashion programming at ASU. There are currently 266 student theses surrounding the keyword “fashion” from Barrett, the Honors College, but there has not been a direct push from students to implement a program at ASU. This thesis aims to illustrate the important ways such programming will greatly benefit ASU and its stakeholders.

In our thesis we will investigate current ASU opportunities related to fashion, gather information from fashion business professionals, gauge student interest in pursuing careers in fashion, and look to peer and aspirational schools in an effort to better understand fashion career resources nationwide. Our hope is to build a stronger curriculum and more successful resources for students to give them the skillsets needed for a successful career in fashion.
ContributorsLopez, Audree (Co-author) / Bosmeny, Chloe (Co-author) / Ostrom, Amy (Thesis director) / Setlow, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Herberger Institute for Design and the Arts (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05