Matching Items (256)
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150280-Thumbnail Image.png
Description
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.
ContributorsHazelton, Andrea Florence (Author) / Stromberg, Juliet C. (Thesis advisor) / Schmeeckle, Mark W (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2011
137700-Thumbnail Image.png
Description
This thesis focuses on the erotic depictions of Lucretia and Susanna in Renaissance art. Both noted for displaying exemplary chastity, Lucretia and Susanna gained popularity as Christian and secular role models for women in the late Middle Ages and Renaissance. My examination of the heroines addresses the seductive portrayal of

This thesis focuses on the erotic depictions of Lucretia and Susanna in Renaissance art. Both noted for displaying exemplary chastity, Lucretia and Susanna gained popularity as Christian and secular role models for women in the late Middle Ages and Renaissance. My examination of the heroines addresses the seductive portrayal of these women in painting, which seemingly contradicts the essence of their celebrity. The images specifically analyzed in this thesis include: Lucas Cranach the Elder's Lucretia from 1525, Lucretia from 1533, and Venus from 1532 as well as Tintoretto's Susanna and the Elders and Annibale Carracci's Susanna and the Elders. The scope of my thesis includes both textual and visual analyses of the myths/figures and the disparity that arises between them. Employing Lucretia and Susanna as examples, my aim is to demonstrate a subtle subversion occurring within images of powerful women that ultimately strips them of their power.
ContributorsWilliamson, Jennifer Marie (Author) / Schleif, Corine (Thesis director) / Geschwind, Rachel (Committee member) / Pratt, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Art (Contributor)
Created2013-05
137701-Thumbnail Image.png
Description
Science fiction themed video games, specifically Role Playing Games (RPGs) like Deus Ex: Human Revolution (DX:HR), that focus on an emerging technology, contain features that help to better inform anticipatory governance. In a game like DX:HR, players vicariously experience human-enhancement technology and its societal effects through their in-game character. Acting

Science fiction themed video games, specifically Role Playing Games (RPGs) like Deus Ex: Human Revolution (DX:HR), that focus on an emerging technology, contain features that help to better inform anticipatory governance. In a game like DX:HR, players vicariously experience human-enhancement technology and its societal effects through their in-game character. Acting as the character, the player explores the topic of human-enhancement technology in various ways, including dialogue with non-player characters (NPCs) and decisions that directly affect the game's world. Because Deus Ex: Human Revolution and games similar to it, allow players to explore and think about the technology itself, the stances on it, and its potential societal effects, they facilitate the anticipatory governance process. In this paper I postulate a theory of anticipatory gaming, which asserts that video games inform the anticipatory governance process for an emerging technology. To demonstrate this theory I examine the parts of the anticipatory governance process and demonstrate RPG's ability to inform it, through a case study of Deus Ex: Human Revolution.
ContributorsShedd, Jesse Bernard (Author) / Wetmore, Jameson (Thesis director) / Fisher, Erik (Committee member) / McKnight, John Carter (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05
152183-Thumbnail Image.png
Description
Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as

Two critical limitations for hyperspatial imagery are higher imagery variances and large data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes are the solution, more data sources and large amounts of testing at high costs are required. In this study, I used tree density segmentation as the key element of a three-level hierarchical vegetation framework for reducing those costs, and a three-step procedure was used to evaluate its effects. A two-step procedure, which involved environmental stratifications and the random walker algorithm, was used for tree density segmentation. I determined whether variation in tone and texture could be reduced within environmental strata, and whether tree density segmentations could be labeled by species associations. At the final level, two tree density segmentations were partitioned into smaller subsets using eCognition in order to label individual species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were used to evaluate whether imagery objects have different mean values from near segmentations as a measure of segmentation accuracy. The two-step procedure was able to delineating tree density segments and label species types robustly, compared to previous hierarchical frameworks. However, eCognition was not able to produce detailed, reasonable image objects with optimal scale parameters for species labeling. This hierarchical vegetation framework is applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating climate change impacts on vegetation at low cost using widely available data and a personal laptop.
ContributorsLiau, Yan-ting (Author) / Franklin, Janet (Thesis advisor) / Turner, Billie (Committee member) / Myint, Soe (Committee member) / Arizona State University (Publisher)
Created2013
152418-Thumbnail Image.png
Description
Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area

Species distribution modeling is used to study changes in biodiversity and species range shifts, two currently well-known manifestations of climate change. The focus of this study is to explore how distributions of suitable habitat might shift under climate change for shrub communities within the Santa Monica Mountains National Recreation Area (SMMNRA), through a comparison of community level to individual species level distribution modeling. Species level modeling is more commonly utilized, in part because community level modeling requires detailed community composition data that are not always available. However, community level modeling may better detect patterns in biodiversity. To examine the projected impact on suitable habitat in the study area, I used the MaxEnt modeling algorithm to create and evaluate species distribution models with presence only data for two future climate models at community and individual species levels. I contrasted the outcomes as a method to describe uncertainty in projected models. To derive a range of sensitivity outcomes I extracted probability frequency distributions for suitable habitat from raster grids for communities modeled directly as species groups and contrasted those with communities assembled from intersected individual species models. The intersected species models were more sensitive to climate change relative to the grouped community models. Suitable habitat in SMMNRA's bounds was projected to decline from about 30-90% for the intersected models and about 20-80% for the grouped models from its current state. Models generally captured floristic distinction between community types as drought tolerance. Overall the impact on drought tolerant communities, growing in hotter, drier habitat such as Coastal Sage Scrub, was predicted to be less than on communities growing in cooler, moister more interior habitat, such as some chaparral types. Of the two future climate change models, the wetter model projected less impact for most communities. These results help define risk exposure for communities and species in this conservation area and could be used by managers to focus vegetation monitoring tasks to detect early response to climate change. Increasingly hot and dry conditions could motivate opportunistic restoration projects for Coastal Sage Scrub, a threatened vegetation type in Southern California.
ContributorsJames, Jennifer (Author) / Franklin, Janet (Thesis advisor) / Rey, Sergio (Committee member) / Wentz, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2014
150443-Thumbnail Image.png
Description
ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms

ABSTRACT An Ensemble Monte Carlo (EMC) computer code has been developed to simulate, semi-classically, spin-dependent electron transport in quasi two-dimensional (2D) III-V semiconductors. The code accounts for both three-dimensional (3D) and quasi-2D transport, utilizing either 3D or 2D scattering mechanisms, as appropriate. Phonon, alloy, interface roughness, and impurity scattering mechanisms are included, accounting for the Pauli Exclusion Principle via a rejection algorithm. The 2D carrier states are calculated via a self-consistent 1D Schrödinger-3D-Poisson solution in which the charge distribution of the 2D carriers in the quantization direction is taken as the spatial distribution of the squared envelope functions within the Hartree approximation. The wavefunctions, subband energies, and 2D scattering rates are updated periodically by solving a series of 1D Schrödinger wave equations (SWE) over the real-space domain of the device at fixed time intervals. The electrostatic potential is updated by periodically solving the 3D Poisson equation. Spin-polarized transport is modeled via a spin density-matrix formalism that accounts for D'yakanov-Perel (DP) scattering. Also, the code allows for the easy inclusion of additional scattering mechanisms and structural modifications to devices. As an application of the simulator, the current voltage characteristics of an InGaAs/InAlAs HEMT are simulated, corresponding to nanoscale III-V HEMTs currently being fabricated by Intel Corporation. The comparative effects of various scattering parameters, material properties and structural attributes are investigated and compared with experiments where reasonable agreement is obtained. The spatial evolution of spin-polarized carriers in prototypical Spin Field Effect Transistor (SpinFET) devices is then simulated. Studies of the spin coherence times in quasi-2D structures is first investigated and compared to experimental results. It is found that the simulated spin coherence times for GaAs structures are in reasonable agreement with experiment. The SpinFET structure studied is a scaled-down version of the InGaAs/InAlAs HEMT discussed in this work, in which spin-polarized carriers are injected at the source, and the coherence length is studied as a function of gate voltage via the Rashba effect.
ContributorsTierney, Brian David (Author) / Goodnick, Stephen (Thesis advisor) / Ferry, David (Committee member) / Akis, Richard (Committee member) / Saraniti, Marco (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
151042-Thumbnail Image.png
Description
Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate

Climate and land use change are projected to threaten biodiversity over the coming century. However, the combined effects of these threats on biodiversity and the capacity of current conservation networks to protect species' habitat are not well understood. The goals of this study were to evaluate the effect of climate change and urban development on vegetation distribution in a Mediterranean-type ecosystem; to identify the primary source of uncertainty in suitable habitat predictions; and to evaluate how well conservation areas protect future habitat in the Southwest ecoregion of the California Floristic Province. I used a consensus-based modeling approach combining three different species distribution models to predict current and future suitable habitat for 19 plant species representing different plant functional types (PFT) defined by fire-response (obligate seeders, resprouting shrubs), and life forms (herbs, subshurbs). I also examined the response of species grouped by range sizes (large, small). I used two climate models, two emission scenarios, two thresholds, and high-resolution (90m resolution) environmental data to create a range of potential scenarios. I evaluated the effectiveness of an existing conservation network to protect suitable habitat for rare species in light of climate and land use change. The results indicate that the area of suitable habitat for each species varied depending on the climate model, emission scenario, and threshold combination. The suitable habitat for up to four species could disappear from the ecoregion, while suitable habitat for up to 15 other species could decrease under climate change conditions. The centroid of the species' suitable environmental conditions could shift up to 440 km. Large net gains in suitable habitat were predicted for a few species. The suitable habitat area for herbs has a small response to climate change, while obligate seeders could be the most affected PFT. The results indicate that the other two PFTs gain a considerable amount of suitable habitat area. Several rare species could lose suitable habitat area inside designated conservation areas while gaining suitable habitat area outside. Climate change is predicted to be more important than urban development as a driver of habitat loss for vegetation in this region in the coming century. These results indicate that regional analyses of this type are useful and necessary to understand the dynamics of drivers of change at the regional scale and to inform decision making at this scale.
ContributorsBeltrán Villarreal, Bray de Jesús (Author) / Franklin, Janet (Thesis advisor) / Fenichel, Eli P (Committee member) / Kinzig, Ann P (Committee member) / Collins, James P. (Committee member) / Arizona State University (Publisher)
Created2012
136102-Thumbnail Image.png
Description
This paper studies the change in social diversity and interaction space from the Classic to Postclassic periods in the Mimbres Valley and East Mimbres Area. Between the Classic and Postclassic periods the Mimbres region of the American Southwest exhibits an increase in diversity of ceramic wares. Previous research suggests that

This paper studies the change in social diversity and interaction space from the Classic to Postclassic periods in the Mimbres Valley and East Mimbres Area. Between the Classic and Postclassic periods the Mimbres region of the American Southwest exhibits an increase in diversity of ceramic wares. Previous research suggests that increased diversity of ceramics indicates a more diverse community, which could pose challenges to local social interaction (Nelson et al. 2011). I am interested in whether the architecture of plazas, focal points of communities' social structures, change in response to the growing social diversity. To examine this, I quantify the diversity of painted ceramics at Classic and Postclassic villages as well as the extent of the enclosure of plazas. I find that there is a definite shift towards greater plaza enclosure between the Classic and Postclassic periods. I conclude this paper with a discussion of possible interpretations of this trend regarding the social reactions of Mimbres communities to the changes which reshaped the region between the Classic and Postclassic periods.
Created2015-05
136115-Thumbnail Image.png
Description
Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley

Background: Both puberty and diets composed of high levels of saturated fats have been shown to result in central adiposity, fasting hyperinsulinemia, insulin resistance and impaired glucose tolerance. While a significantly insulinogenic phenotypic change occurs in these two incidences, glucose homeostasis does not appear to be affected. Methods: Male, Sprague-dawley rats were fed diets consisting of CHOW or low fat (LF), High Fat Diet and High Fat Diet (HFD) with supplementary Canola Oil (Monounsaturated fat). These rats were given these diets at 4-5 weeks old and given intraperitoneal and oral glucose tolerance tests(IPGTT; OGTT) at 4 and 8 weeks to further understand glucose and insulin behavior under different treatments. (IPGTT: LF-n=14, HFD-n=16, HFD+CAN-n=12; OGTT: LF-n=8, HFD-n=8, HFD+CAN-n=6). Results: When comparing LF fed rats at 8 weeks with 4 week glucose challenge test, area under the curve (AUC) of glucose was 1.2 that of 4 weeks. At 8 weeks, HFD fed rats AUCg was much greater than LF fed rats under both IPGTT and OGTT. When supplemented with Canola oil, HFD fed rats AUC returned to LF data range. Despite the alleviating glucose homeostasis affects of Canola oil the AUC of insulin curve, which was elevated by HFD, remained high. Conclusion: HFD in maturing rats elevates fasting insulin levels, increases insulin resistance and lowers glucose homeostasis. When given a monounsaturated fatty acid (MUFA) supplement fasting hyperinsulinemia, and late hyperinsulinemia still occur though glucose homeostasis is regained. For OGTT HFD also induced late hyper c-peptide levels and compared to LF and HFD+CAN, a higher c-peptide level over time.
ContributorsRay, Tyler John (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Towner, Kali (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2015-05