Matching Items (26)
130387-Thumbnail Image.png
Description

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This

X-ray free electron lasers are used in measuring diffraction patterns from nanocrystals in the 'diffract-before-destroy' mode by outrunning radiation damage. The finite-sized nanocrystals provide an opportunity to recover intensity between Bragg spots by removing the modulating function that depends on crystal shape, i.e. the transform of the crystal shape. This shape-transform dividing-out scheme for solving the phase problem has been tested using simulated examples with cubic crystals. It provides a phasing method which does not require atomic resolution data, chemical modification to the sample, or modelling based on the protein databases. It is common to find multiple structural units (e.g. molecules, in symmetry-related positions) within a single unit cell, therefore incomplete unit cells (e.g. one additional molecule) can be observed at surface layers of crystals. In this work, the effects of such incomplete unit cells on the 'dividing-out' phasing algorithm are investigated using 2D crystals within the projection approximation. It is found that the incomplete unit cells do not hinder the recovery of the scattering pattern from a single unit cell (after dividing out the shape transforms from data merged from many nanocrystals of different sizes), assuming that certain unit-cell types are preferred. The results also suggest that the dynamic range of the data is a critical issue to be resolved in order to apply the shape transform method practically.

ContributorsLiu, Haiguang (Author) / Zatsepin, Nadia (Author) / Spence, John (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2014-01-01
130319-Thumbnail Image.png
Description

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We

Serial femtosecond crystallography requires reliable and efficient delivery of fresh crystals across the beam of an X-ray free-electron laser over the course of an experiment. We introduce a double-flow focusing nozzle to meet this challenge, with significantly reduced sample consumption, while improving jet stability over previous generations of nozzles. We demonstrate its use to determine the first room-temperature structure of RNA polymerase II at high resolution, revealing new structural details. Moreover, the double flow-focusing nozzles were successfully tested with three other protein samples and the first room temperature structure of an extradiol ring-cleaving dioxygenase was solved by utilizing the improved operation and characteristics of these devices.

ContributorsOberthuer, Dominik (Author) / Knoska, Juraj (Author) / Wiedorn, Max O. (Author) / Beyerlein, Kenneth R. (Author) / Bushnell, David A. (Author) / Kovaleva, Elena G. (Author) / Heymann, Michael (Author) / Gumprecht, Lars (Author) / Kirian, Richard (Author) / Barty, Anton (Author) / Mariani, Valerio (Author) / Tolstikova, Aleksandra (Author) / Adriano, Luigi (Author) / Awel, Salah (Author) / Barthelmess, Miriam (Author) / Dorner, Katerina (Author) / Xavier, P. Lourdu (Author) / Yefanov, Oleksandr (Author) / James, Daniel (Author) / Nelson, Garrett (Author) / Wang, Dingjie (Author) / Calvey, George (Author) / Chen, Yujie (Author) / Schmidt, Andrea (Author) / Szczepek, Michael (Author) / Frielingsdorf, Stefan (Author) / Lenz, Oliver (Author) / Snell, Edward (Author) / Robinson, Philip J. (Author) / Sarler, Bozidar (Author) / Belsak, Grega (Author) / Macek, Marjan (Author) / Wilde, Fabian (Author) / Aquila, Andrew (Author) / Boutet, Sebastien (Author) / Liang, Mengning (Author) / Hunter, Mark S. (Author) / Scheerer, Patrick (Author) / Lipscomb, John D. (Author) / Weierstall, Uwe (Author) / Kornberg, Roger D. (Author) / Spence, John (Author) / Pollack, Lois (Author) / Chapman, Henry N. (Author) / Bajt, Sasa (Author) / College of Liberal Arts and Sciences (Contributor) / Department of Physics (Contributor)
Created2017-03-16
130320-Thumbnail Image.png
Description

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a

X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Scattering patterns resulting from single particles were selected and compiled into a dataset which can be valuable for algorithm developments in single particle scattering research.

ContributorsLi, Xuanxuan (Author) / Chiu, Chun-Ya (Author) / Wang, Hsiang-Ju (Author) / Kassemeyer, Stephan (Author) / Botha, Sabine (Author) / Shoeman, Robert L. (Author) / Lawrence, Robert (Author) / Kupitz, Christopher (Author) / Kirian, Richard (Author) / James, Daniel (Author) / Wang, Dingjie (Author) / Nelson, Garrett (Author) / Messerschmidt, Marc (Author) / Boutet, Sebastien (Author) / Williams, Garth J. (Author) / Hartman, Elisabeth (Author) / Jafarpour, Aliakbar (Author) / Foucar, Lutz M. (Author) / Barty, Anton (Author) / Chapman, Henry (Author) / Liang, Mengning (Author) / Menzel, Andreas (Author) / Wang, Fenglin (Author) / Basu, Shibom (Author) / Fromme, Raimund (Author) / Doak, R. Bruce (Author) / Fromme, Petra (Author) / Weierstall, Uwe (Author) / Huang, Michael H. (Author) / Spence, John (Author) / Schlichting, Ilme (Author) / Hogue, Brenda (Author) / Liu, Haiguang (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2017-04-11
130322-Thumbnail Image.png
Description

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

ContributorsMunke, Anna (Author) / Andreasson, Jakob (Author) / Aquila, Andrew (Author) / Awel, Salah (Author) / Ayyer, Kartik (Author) / Barty, Anton (Author) / Bean, Richard J. (Author) / Berntsen, Peter (Author) / Bielecki, Johan (Author) / Boutet, Sebastien (Author) / Bucher, Maximilian (Author) / Chapman, Henry N. (Author) / Daurer, Benedikt J. (Author) / DeMirci, Hasan (Author) / Elser, Veit (Author) / Fromme, Petra (Author) / Hajdu, Janos (Author) / Hantke, Max F. (Author) / Higashiura, Akifumi (Author) / Hogue, Brenda (Author) / Hosseinizadeh, Ahmad (Author) / Kim, Yoonhee (Author) / Kirian, Richard (Author) / Reddy, Hemanth K. N. (Author) / Lan, Ti-Yen (Author) / Larsson, Daniel S. D. (Author) / Liu, Haiguang (Author) / Loh, N. Duane (Author) / Maia, Filipe R. N. C. (Author) / Mancuso, Adrian P. (Author) / Muhlig, Kerstin (Author) / Nakagawa, Atsushi (Author) / Nam, Daewoong (Author) / Nelson, Garrett (Author) / Nettelblad, Carl (Author) / Okamoto, Kenta (Author) / Ourmazd, Abbas (Author) / Rose, Max (Author) / van der Schot, Gijs (Author) / Schwander, Peter (Author) / Seibert, M. Marvin (Author) / Sellberg, Jonas A. (Author) / Sierra, Raymond G. (Author) / Song, Changyong (Author) / Svenda, Martin (Author) / Timneanu, Nicusor (Author) / Vartanyants, Ivan A. (Author) / Westphal, Daniel (Author) / Wiedom, Max O. (Author) / Williams, Garth J. (Author) / Xavier, Paulraj Lourdu (Author) / Soon, Chun Hong (Author) / Zook, James (Author) / College of Liberal Arts and Sciences (Contributor, Contributor) / School of Molecular Sciences (Contributor) / Biodesign Institute (Contributor) / Applied Structural Discovery (Contributor) / School of Life Sciences (Contributor) / Infectious Diseases and Vaccinology (Contributor) / Department of Physics (Contributor)
Created2016-08-01
130359-Thumbnail Image.png
Description
Background
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical

Background
Increasing empirical evidence supports associations between neighborhood environments and physical activity. However, since most studies were conducted in a single country, particularly western countries, the generalizability of associations in an international setting is not well understood. The current study examined whether associations between perceived attributes of neighborhood environments and physical activity differed by country.
Methods
Population representative samples from 11 countries on five continents were surveyed using comparable methodologies and measurement instruments. Neighborhood environment × country interactions were tested in logistic regression models with meeting physical activity recommendations as the outcome, adjusted for demographic characteristics. Country-specific associations were reported.
Results
Significant neighborhood environment attribute × country interactions implied some differences across countries in the association of each neighborhood attribute with meeting physical activity recommendations. Across the 11 countries, land-use mix and sidewalks had the most consistent associations with physical activity. Access to public transit, bicycle facilities, and low-cost recreation facilities had some associations with physical activity, but with less consistency across countries. There was little evidence supporting the associations of residential density and crime-related safety with physical activity in most countries.
Conclusion
There is evidence of generalizability for the associations of land use mix, and presence of sidewalks with physical activity. Associations of other neighborhood characteristics with physical activity tended to differ by country. Future studies should include objective measures of neighborhood environments, compare psychometric properties of reports across countries, and use better specified models to further understand the similarities and differences in associations across countries.
ContributorsDing, Ding (Author) / Adams, Marc (Author) / Sallis, James F. (Author) / Norman, Gregory J. (Author) / Hovell, Melbourn F. (Author) / Chambers, Christina D. (Author) / Hofstetter, C. Richard (Author) / Bowles, Heather R. (Author) / Hagstromer, Maria (Author) / Craig, Cora L. (Author) / Fernando Gomez, Luis (Author) / De Bourdeaudhuij, Ilse (Author) / Macfarlane, Duncan J. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Murase, Norio (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Lefevre, Johan (Author) / Volbekiene, Vida (Author) / Bauman, Adrian E. (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05-14
130361-Thumbnail Image.png
Description
Background
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2)

Background
Neighborhood environment studies of physical activity (PA) have been mainly single-country focused. The International Prevalence Study (IPS) presented a rare opportunity to examine neighborhood features across countries. The purpose of this analysis was to: 1) detect international neighborhood typologies based on participants’ response patterns to an environment survey and 2) to estimate associations between neighborhood environment patterns and PA.
Methods
A Latent Class Analysis (LCA) was conducted on pooled IPS adults (N=11,541) aged 18 to 64 years old (mean=37.5 ±12.8 yrs; 55.6% women) from 11 countries including Belgium, Brazil, Canada, Colombia, Hong Kong, Japan, Lithuania, New Zealand, Norway, Sweden, and the U.S. This subset used the Physical Activity Neighborhood Environment Survey (PANES) that briefly assessed 7 attributes within 10–15 minutes walk of participants’ residences, including residential density, access to shops/services, recreational facilities, public transit facilities, presence of sidewalks and bike paths, and personal safety. LCA derived meaningful subgroups from participants’ response patterns to PANES items, and participants were assigned to neighborhood types. The validated short-form International Physical Activity Questionnaire (IPAQ) measured likelihood of meeting the 150 minutes/week PA guideline. To validate derived classes, meeting the guideline either by walking or total PA was regressed on neighborhood types using a weighted generalized linear regression model, adjusting for gender, age and country.
Results
A 5-subgroup solution fitted the dataset and was interpretable. Neighborhood types were labeled, “Overall Activity Supportive (52% of sample)”, “High Walkable and Unsafe with Few Recreation Facilities (16%)”, “Safe with Active Transport Facilities (12%)”, “Transit and Shops Dense with Few Amenities (15%)”, and “Safe but Activity Unsupportive (5%)”. Country representation differed by type (e.g., U.S. disproportionally represented “Safe but Activity Unsupportive”). Compared to the Safe but Activity Unsupportive, two types showed greater odds of meeting PA guideline for walking outcome (High Walkable and Unsafe with Few Recreation Facilities, OR= 2.26 (95% CI 1.18-4.31); Overall Activity Supportive, OR= 1.90 (95% CI 1.13-3.21). Significant but smaller odds ratios were also found for total PA.
Conclusions
Meaningful neighborhood patterns generalized across countries and explained practical differences in PA. These observational results support WHO/UN recommendations for programs and policies targeted to improve features of the neighborhood environment for PA.
ContributorsAdams, Marc (Author) / Ding, Ding (Author) / Sallis, James F. (Author) / Bowles, Heather R. (Author) / Ainsworth, Barbara (Author) / Bergman, Patrick (Author) / Bull, Fiona C. (Author) / Carr, Harriette (Author) / Craig, Cora L. (Author) / De Bourdeaudhuij, Ilse (Author) / Fernando Gomez, Luis (Author) / Hagstromer, Maria (Author) / Klasson-Heggebo, Lena (Author) / Inoue, Shigeru (Author) / Lefevre, Johan (Author) / Macfarlane, Duncan J. (Author) / Matsudo, Sandra (Author) / Matsudo, Victor (Author) / McLean, Grant (Author) / Murase, Norio (Author) / Sjostrom, Michael (Author) / Tomten, Heidi (Author) / Volbekiene, Vida (Author) / Bauman, Adrian (Author) / College of Health Solutions (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-03-07
Description
X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given

X-ray Free Electron Lasers (XFELs) are used for diffractive x-ray imaging of the structure of many biological particles, such as viruses and proteins. The ultimate goal for XFEL-based microscopy is atomic resolution images of non-crystalline particles. However, data collection efficiency as well as the limited amount of measurement time given annually to researchers, such high-resolution images are presently impossible to attain. Here, we consider two potential solutions to the single-particle hit rate problem; the first looks at applying static electric fields to existing aerodynamic particle injectors, and the second looks at the viability of using time-varying electric fields associated with ion traps to create high-density regions of particles. For the static solution, we looked at applying a constant electric potential to the nozzle, as well as applying a high voltage to a ring electrode in close proximity to a grounded nozzle. We considered the breakdown field strength of the helium gas used to determine how closely the ring electrode could be placed without creating an arc that could potentially destroy expensive equipment. Then, we considered the possibility of using electrodynamic ion traps to increase particle densities. We first characterized how charged particles behave in oscillating electric fields using a simple electrode geometry. Using the general results from this, we then constructed a rudimentary ion trap to test if our experiment agreed with the theory. Finally, we conducted a literature review to determine what particle densities other scientists have been able to measure using ion traps. We then compared existing ion traps to what we expect from the nozzle injectors to determine which method may be the better solution.
ContributorsBradshaw, Layne Nicholas (Author) / Kirian, Richard (Thesis director) / Weierstall, Uwe (Committee member) / Department of Physics (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

The self-assembly of strongly-coupled nanocrystal superlattices, as a convenient bottom-up synthesis technique featuring a wide parameter space, is at the forefront of next-generation material design. To realize the full potential of such tunable, functional materials, a more complete understanding of the self-assembly process and the artificial crystals it produces is

The self-assembly of strongly-coupled nanocrystal superlattices, as a convenient bottom-up synthesis technique featuring a wide parameter space, is at the forefront of next-generation material design. To realize the full potential of such tunable, functional materials, a more complete understanding of the self-assembly process and the artificial crystals it produces is required. In this work, we discuss the results of a hard coherent X-ray scattering experiment at the Linac Coherent Light Source, observing superlattices long after their initial nucleation. The resulting scattering intensity correlation functions have dispersion suggestive of a disordered crystalline structure and indicate the occurrence of rapid, strain-relieving events therein. We also present real space reconstructions of individual superlattices obtained via coherent diffractive imaging. Through this analysis we thus obtain high-resolution structural and dynamical information of self-assembled superlattices in their native liquid environment.

ContributorsHurley, Matthew (Author) / Teitelbaum, Samuel (Thesis director) / Ginsberg, Naomi (Committee member) / Kirian, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2023-05
153785-Thumbnail Image.png
Description
Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high

Scientists have used X-rays to study biological molecules for nearly a century. Now with the X-ray free electron laser (XFEL), new methods have been developed to advance structural biology. These new methods include serial femtosecond crystallography, single particle imaging, solution scattering, and time resolved techniques.

The XFEL is characterized by high intensity pulses, which are only about 50 femtoseconds in duration. The intensity allows for scattering from microscopic particles, while the short pulses offer a way to outrun radiation damage. XFELs are powerful enough to obliterate most samples in a single pulse. While this allows for a “diffract and destroy” methodology, it also requires instrumentation that can position microscopic particles into the X-ray beam (which may also be microscopic), continuously renew the sample after each pulse, and maintain sample viability during data collection.

Typically these experiments have used liquid microjets to continuously renew sample. The high flow rate associated with liquid microjets requires large amounts of sample, most of which runs to waste between pulses. An injector designed to stream a viscous gel-like material called lipidic cubic phase (LCP) was developed to address this problem. LCP, commonly used as a growth medium for membrane protein crystals, lends itself to low flow rate jetting and so reduces the amount of sample wasted significantly.

This work discusses sample delivery and injection for XFEL experiments. It reviews the liquid microjet method extensively, and presents the LCP injector as a novel device for serial crystallography, including detailed protocols for the LCP injector and anti-settler operation.
ContributorsJames, Daniel (Author) / Spence, John (Thesis advisor) / Weierstall, Uwe (Committee member) / Kirian, Richard (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2015
155021-Thumbnail Image.png
Description
The superior brightness and ultra short pulse duration of X-ray free electron laser

(XFEL) allows it to outrun radiation damage in coherent diffractive imaging since elastic scattering terminates before photoelectron cascades commences. This “diffract-before-destroy” feature of XFEL opened up new opportunities for biological macromolecule imaging and structure studies by breaking the

The superior brightness and ultra short pulse duration of X-ray free electron laser

(XFEL) allows it to outrun radiation damage in coherent diffractive imaging since elastic scattering terminates before photoelectron cascades commences. This “diffract-before-destroy” feature of XFEL opened up new opportunities for biological macromolecule imaging and structure studies by breaking the limit to spatial resolution imposed by the maximum dose that is allowed before radiation damage. However, data collection in serial femto-second crystallography (SFX) using XFEL is affected by a bunch of stochastic factors, which pose great challenges to the data analysis in SFX. These stochastic factors include crystal size, shape, random orientation, X-ray photon flux, position and energy spectrum. Monte-Carlo integration proves effective and successful in extracting the structure factors by merging all diffraction patterns given that the data set is sufficiently large to average out all stochastic factors. However, this approach typically requires hundreds of thousands of patterns collected from experiments. This dissertation explores both experimental and algorithmic methods to eliminate or reduce the effect of stochastic factors in data acquisition and analysis. Coherent convergent X-ray beam diffraction (CCB) is discussed for possibilities of obtaining single-shot angular-integrated rocking curves. It is also shown the interference between Bragg disks helps ab-initio phasing. Two-color diffraction scheme is proposed for time-resolved studies and general data collection strategies are discussed based on error metrics. A new auto-indexing algorithm for sparse patterns is developed and demonstrated for both simulated and experimental data. Statistics show that indexing rate is increased by 3 times for I3C data set collected from beam time LJ69 at Linac coherent light source (LCLS). Finally, dynamical inversion from electron diffraction is explored as an alternative approach for structure determination.
ContributorsLi, Chufeng (Author) / Spence, John CH (Thesis advisor) / Spence, John (Committee member) / Kirian, Richard (Committee member) / Weierstall, Uwe (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2016