Matching Items (85)
Filtering by

Clear all filters

150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
149650-Thumbnail Image.png
Description
A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are

A synbody is a newly developed protein binding peptide which can be rapidly produced by chemical methods. The advantages of the synbody producing process make it a potential human proteome binding reagent. Most of the synbodies are designed to bind to specific proteins. The peptides incorporated in a synbody are discovered with peptide microarray technology. Nevertheless, the targets for unknown synbodies can also be discovered by searching through a protein mixture. The first part of this thesis mainly focuses on the process of target searching, which was performed with immunoprecipitation assays and mass spectrometry analysis. Proteins are pulled down from the cell lysate by certain synbodies, and then these proteins are identified using mass spectrometry. After excluding non-specific bindings, the interaction between a synbody and its real target(s) can be verified with affinity measurements. As a specific example, the binding between 1-4-KCap synbody and actin was discovered. This result proved the feasibility of the mass spectrometry based method and also suggested that a high throughput synbody discovery platform for the human proteome could be developed. Besides the application of synbody development, the peptide microarray technology can also be used for immunosignatures. The composition of all types of antibodies existing in one's blood is related to an individual's health condition. A method, called immunosignaturing, has been developed for early disease diagnosis based on this principle. CIM10K microarray slides work as a platform for blood antibody detection in immunosignaturing. During the analysis of an immunosignature, the data from these slides needs to be validated by using landing light peptides. The second part of this thesis focuses on the validation of the data. A biotinylated peptide was used as a landing light on the new CIM10K slides. The data was collected in several rounds of tests and indicated that the variation among landing lights was significantly reduced by using the newly prepared biotinylated peptide compared with old peptide mixture. Several suggestions for further landing light improvement are proposed based on the results.
ContributorsSun, Minyao (Author) / Johnston, Stephen Albert (Thesis advisor) / Diehnelt, Chris Wayne (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
149812-Thumbnail Image.png
Description
Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy

Patients with Alzheimer's disease (AD) exhibit a significantly higher incidence of unprovoked seizures compared to age-matched non-AD controls, and animal models of AD (i.e., transgenic human amyloid precursor protein, hAPP mice) display neural hyper-excitation and epileptic seizures. Hyperexcitation is particularly important because it contributes to the high incidence of epilepsy in AD patients as well as AD-related synaptic deficits and neurodegeneration. Given that there is significant amyloid-β (Aβ) accumulation and deposition in AD brain, Aβ exposure ultimately may be responsible for neural hyper-excitation in both AD patients and animal models. Emerging evidence indicates that α7 nicotinic acetylcholine receptors (α7-nAChR) are involved in AD pathology, because synaptic impairment and learning and memory deficits in a hAPPα7-/- mouse model are decreased by nAChR α7 subunit gene deletion. Given that Aβ potently modulates α7-nAChR function, that α7-nAChR expression is significantly enhanced in both AD patients and animal models, and that α7-nAChR play an important role in regulating neuronal excitability, it is reasonable that α7-nAChRs may contribute to Aβ-induced neural hyperexcitation. We hypothesize that increased α7-nAChR expression and function as a consequence of Aβ exposure is important in Aβ-induced neural hyperexcitation. In this project, we found that exposure of Aβ aggregates at a nanomolar range induces neuronal hyperexcitation and toxicity via an upregulation of α7-nAChR in cultured hippocampus pyramidal neurons. Aβ up-regulates α7-nAChRs function and expression through a post translational mechanism. α7-nAChR up-regulation occurs prior to Aβ-induced neuronal hyperexcitation and toxicity. Moreover, inhibition of α7-nAChR or deletion of α7-nAChR prevented Aβ induced neuronal hyperexcitation and toxicity, which suggests that α7-nAChRs are required for Aβ induced neuronal hyperexcitation and toxicity. These results reveal a profound role for α7-nAChR in mediating Aβ-induced neuronal hyperexcitation and toxicity and predict that Aβ-induced up-regulation of α7-nAChR could be an early and critical event in AD etiopathogenesis. Drugs targeting α7-nAChR or seizure activity could be viable therapies for AD treatment.
ContributorsLiu, Qiang (Author) / Wu, Jie (Thesis advisor) / Lukas, Ronald J (Committee member) / Chang, Yongchang (Committee member) / Sierks, Michael (Committee member) / Smith, Brian (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2011
150250-Thumbnail Image.png
Description
Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze

Immunosignaturing is a new immunodiagnostic technology that uses random-sequence peptide microarrays to profile the humoral immune response. Though the peptides have little sequence homology to any known protein, binding of serum antibodies may be detected, and the pattern correlated to disease states. The aim of my dissertation is to analyze the factors affecting the binding patterns using monoclonal antibodies and determine how much information may be extracted from the sequences. Specifically, I examined the effects of antibody concentration, competition, peptide density, and antibody valence. Peptide binding could be detected at the low concentrations relevant to immunosignaturing, and a monoclonal's signature could even be detected in the presences of 100 fold excess naive IgG. I also found that peptide density was important, but this effect was not due to bivalent binding. Next, I examined in more detail how a polyreactive antibody binds to the random sequence peptides compared to protein sequence derived peptides, and found that it bound to many peptides from both sets, but with low apparent affinity. An in depth look at how the peptide physicochemical properties and sequence complexity revealed that there were some correlations with properties, but they were generally small and varied greatly between antibodies. However, on a limited diversity but larger peptide library, I found that sequence complexity was important for antibody binding. The redundancy on that library did enable the identification of specific sub-sequences recognized by an antibody. The current immunosignaturing platform has little repetition of sub-sequences, so I evaluated several methods to infer antibody epitopes. I found two methods that had modest prediction accuracy, and I developed a software application called GuiTope to facilitate the epitope prediction analysis. None of the methods had sufficient accuracy to identify an unknown antigen from a database. In conclusion, the characteristics of the immunosignaturing platform observed through monoclonal antibody experiments demonstrate its promise as a new diagnostic technology. However, a major limitation is the difficulty in connecting the signature back to the original antigen, though larger peptide libraries could facilitate these predictions.
ContributorsHalperin, Rebecca (Author) / Johnston, Stephen A. (Thesis advisor) / Bordner, Andrew (Committee member) / Taylor, Thomas (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
150131-Thumbnail Image.png
Description
African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict

African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict eradication programs. Developing a scalable, accurate and low cost diagnostic for ASF will be of great help for the current situation. CIM's 10K random peptide microarray is a new high-throughput platform that allows systematic investigations of immune responses associated with disease and shows promise as a diagnostic tool. In this study, this new technology was applied to characterize the immune responses of ASF virus (ASFV) infections and immunizations. Six sets of sera from ASFV antigen immunized pigs, 6 sera from infected pigs and 20 sera samples from unexposed pigs were tested and analyzed statistically. Results show that both ASFV antigen immunized pigs and ASFV viral infected pigs can be distinguished from unexposed pigs. Since it appears that immune responses to other viral infections are also distinguishable on this platform, it holds the potential of being useful in developing a new ASF diagnostic. The ability of this platform to identify specific ASFV antibody epitopes was also explored. A subtle motif was found to be shared among a set of peptides displaying the highest reactivity for an antigen specific antibody. However, this motif does not seem to match with any antibody epitopes predicted by a linear antibody epitope prediction.
ContributorsXiao, Liang (Author) / Sykes, Kathryn (Thesis advisor) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011
152186-Thumbnail Image.png
Description
Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic

Specific dendritic morphologies are a hallmark of neuronal identity, circuit assembly, and behaviorally relevant function. Despite the importance of dendrites in brain health and disease, the functional consequences of dendritic shape remain largely unknown. This dissertation addresses two fundamental and interrelated aspects of dendrite neurobiology. First, by utilizing the genetic power of Drosophila melanogaster, these studies assess the developmental mechanisms underlying single neuron morphology, and subsequently investigate the functional and behavioral consequences resulting from developmental irregularity. Significant insights into the molecular mechanisms that contribute to dendrite development come from studies of Down syndrome cell adhesion molecule (Dscam). While these findings have been garnered primarily from sensory neurons whose arbors innervate a two-dimensional plane, it is likely that the principles apply in three-dimensional central neurons that provide the structural substrate for synaptic input and neural circuit formation. As such, this dissertation supports the hypothesis that neuron type impacts the realization of Dscam function. In fact, in Drosophila motoneurons, Dscam serves a previously unknown cell-autonomous function in dendrite growth. Dscam manipulations produced a range of dendritic phenotypes with alteration in branch number and length. Subsequent experiments exploited the dendritic alterations produced by Dscam manipulations in order to correlate dendritic structure with the suggested function of these neurons. These data indicate that basic motoneuron function and behavior are maintained even in the absence of all adult dendrites within the same neuron. By contrast, dendrites are required for adjusting motoneuron responses to specific challenging behavioral requirements. Here, I establish a direct link between dendritic structure and neuronal function at the level of the single cell, thus defining the structural substrates necessary for conferring various aspects of functional motor output. Taken together, information gathered from these studies can inform the quest in deciphering how complex cell morphologies and networks form and are precisely linked to their function.
ContributorsHutchinson, Katie Marie (Author) / Duch, Carsten (Thesis advisor) / Neisewander, Janet (Thesis advisor) / Newfeld, Stuart (Committee member) / Smith, Brian (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
152014-Thumbnail Image.png
Description
Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to

Olfaction is an important sensory modality for behavior since odors inform animals of the presence of food, potential mates, and predators. The fruit fly, Drosophila melanogaster, is a favorable model organism for the investigation of the biophysical mechanisms that contribute to olfaction because its olfactory system is anatomically similar to but simpler than that of vertebrates. In the Drosophila olfactory system, sensory transduction takes place in olfactory receptor neurons housed in the antennae and maxillary palps on the front of the head. The first stage of olfactory processing resides in the antennal lobe, where the structural unit is the glomerulus. There are at least three classes of neurons in the antennal lobe - excitatory projection neurons, excitatory local neurons, and inhibitory local neurons. The arborizations of the local neurons are confined to the antennal lobe, and output from the antennal lobe is carried by projection neurons to higher regions of the brain. Different views exist of how circuits of the Drosophila antennal lobe translate input from the olfactory receptor neurons into projection neuron output. We construct a conductance based neuronal network model of the Drosophila antennal lobe with the aim of understanding possible mechanisms within the antennal lobe that account for the variety of projection neuron activity observed in experimental data. We explore possible outputs obtained from olfactory receptor neuron input that mimic experimental recordings under different connectivity paradigms. First, we develop realistic minimal cell models for the excitatory local neurons, inhibitory local neurons, and projections neurons based on experimental data for Drosophila channel kinetics, and explore the firing characteristics and mathematical structure of these models. We then investigate possible interglomerular and intraglomerular connectivity patterns in the Drosophila antennal lobe, where olfactory receptor neuron input to the antennal lobe is modeled with Poisson spike trains, and synaptic connections within the antennal lobe are mediated by chemical synapses and gap junctions as described in the Drosophila antennal lobe literature. Our simulation results show that inhibitory local neurons spread inhibition among all glomeruli, where projection neuron responses are decreased relatively uniformly for connections of synaptic strengths that are homogeneous. Also, in the case of homogeneous excitatory synaptic connections, the excitatory local neuron network facilitates odor detection in the presence of weak stimuli. Excitatory local neurons can spread excitation from projection neurons that receive more input from olfactory receptor neurons to projection neurons that receive less input from olfactory receptor neurons. For the parameter values for the network models associated with these results, eLNs decrease the ability of the network to discriminate among single odors.
ContributorsLuli, Dori (Author) / Crook, Sharon (Thesis advisor) / Baer, Steven (Committee member) / Castillo-Chavez, Carlos (Committee member) / Smith, Brian (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150491-Thumbnail Image.png
Description
We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA

We propose a novel solution to prevent cancer by developing a prophylactic cancer. Several sources of antigens for cancer vaccines have been published. Among these, antigens that contain a frame-shift (FS) peptide or viral peptide are quite attractive for a variety of reasons. FS sequences, from either mistake in RNA processing or in genomic DNA, may lead to generation of neo-peptides that are foreign to the immune system. Viral peptides presumably would originate from exogenous but integrated viral nucleic acid sequences. Both are non-self, therefore lessen concerns about development of autoimmunity. I have developed a bioinformatical approach to identify these aberrant transcripts in the cancer transcriptome. Their suitability for use in a vaccine is evaluated by establishing their frequencies and predicting possible epitopes along with their population coverage according to the prevalence of major histocompatibility complex (MHC) types. Viral transcripts and transcripts with FS mutations from gene fusion, insertion/deletion at coding microsatellite DNA, and alternative splicing were identified in NCBI Expressed Sequence Tag (EST) database. 48 FS chimeric transcripts were validated in 50 breast cell lines and 68 primary breast tumor samples with their frequencies from 4% to 98% by RT-PCR and sequencing confirmation. These 48 FS peptides, if translated and presented, could be used to protect more than 90% of the population in Northern America based on the prediction of epitopes derived from them. Furthermore, we synthesized 150 peptides that correspond to FS and viral peptides that we predicted would exist in tumor patients and we tested over 200 different cancer patient sera. We found a number of serological reactive peptide sequences in cancer patients that had little to no reactivity in healthy controls; strong support for the strength of our bioinformatic approach. This study describes a process used to identify aberrant transcripts that lead to a new source of antigens that can be tested and used in a prophylactic cancer vaccine. The vast amount of transcriptome data of various cancers from the Cancer Genome Atlas (TCGA) project will enhance our ability to further select better cancer antigen candidates.
ContributorsLee, HoJoon (Author) / Johnston, Stephen A. (Thesis advisor) / Kumar, Sudhir (Committee member) / Miller, Laurence (Committee member) / Stafford, Phillip (Committee member) / Sykes, Kathryn (Committee member) / Arizona State University (Publisher)
Created2012
151234-Thumbnail Image.png
Description
Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to

Immunosignaturing is a technology that allows the humoral immune response to be observed through the binding of antibodies to random sequence peptides. The immunosignaturing microarray is based on complex mixtures of antibodies binding to arrays of random sequence peptides in a multiplexed fashion. There are computational and statistical challenges to the analysis of immunosignaturing data. The overall aim of my dissertation is to develop novel computational and statistical methods for immunosignaturing data to access its potential for diagnostics and drug discovery. Firstly, I discovered that a classification algorithm Naive Bayes which leverages the biological independence of the probes on our array in such a way as to gather more information outperforms other classification algorithms due to speed and accuracy. Secondly, using this classifier, I then tested the specificity and sensitivity of immunosignaturing platform for its ability to resolve four different diseases (pancreatic cancer, pancreatitis, type 2 diabetes and panIN) that target the same organ (pancreas). These diseases were separated with >90% specificity from controls and from each other. Thirdly, I observed that the immunosignature of type 2 diabetes and cardiovascular complications are unique, consistent, and reproducible and can be separated by 100% accuracy from controls. But when these two complications arise in the same person, the resultant immunosignature is quite different in that of individuals with only one disease. I developed a method to trace back from informative random peptides in disease signatures to the potential antigen(s). Hence, I built a decipher system to trace random peptides in type 1 diabetes immunosignature to known antigens. Immunosignaturing, unlike the ELISA, has the ability to not only detect the presence of response but also absence of response during a disease. I observed, not only higher but also lower peptides intensities can be mapped to antigens in type 1 diabetes. To study immunosignaturing potential for population diagnostics, I studied effect of age, gender and geographical location on immunosignaturing data. For its potential to be a health monitoring technology, I proposed a single metric Coefficient of Variation that has shown potential to change significantly when a person enters a disease state.
ContributorsKukreja, Muskan (Author) / Johnston, Stephen Albert (Thesis advisor) / Stafford, Phillip (Committee member) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2012