Matching Items (1,600)
Filtering by

Clear all filters

130362-Thumbnail Image.png
Description
Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that

Background
Multicellular organisms consist of cells of many different types that are established during development. Each type of cell is characterized by the unique combination of expressed gene products as a result of spatiotemporal gene regulation. Currently, a fundamental challenge in regulatory biology is to elucidate the gene expression controls that generate the complex body plans during development. Recent advances in high-throughput biotechnologies have generated spatiotemporal expression patterns for thousands of genes in the model organism fruit fly Drosophila melanogaster. Existing qualitative methods enhanced by a quantitative analysis based on computational tools we present in this paper would provide promising ways for addressing key scientific questions.
Results
We develop a set of computational methods and open source tools for identifying co-expressed embryonic domains and the associated genes simultaneously. To map the expression patterns of many genes into the same coordinate space and account for the embryonic shape variations, we develop a mesh generation method to deform a meshed generic ellipse to each individual embryo. We then develop a co-clustering formulation to cluster the genes and the mesh elements, thereby identifying co-expressed embryonic domains and the associated genes simultaneously. Experimental results indicate that the gene and mesh co-clusters can be correlated to key developmental events during the stages of embryogenesis we study. The open source software tool has been made available at http://compbio.cs.odu.edu/fly/.
Conclusions
Our mesh generation and machine learning methods and tools improve upon the flexibility, ease-of-use and accuracy of existing methods.
ContributorsZhang, Wenlu (Author) / Feng, Daming (Author) / Li, Rongjian (Author) / Chernikov, Andrey (Author) / Chrisochoides, Nikos (Author) / Osgood, Christopher (Author) / Konikoff, Charlotte (Author) / Newfeld, Stuart (Author) / Kumar, Sudhir (Author) / Ji, Shuiwang (Author) / Biodesign Institute (Contributor) / Center for Evolution and Medicine (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2013-12-28
130357-Thumbnail Image.png
Description
Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1,

Background
The maintenance of chromosomal integrity is an essential task of every living organism and cellular repair mechanisms exist to guard against insults to DNA. Given the importance of this process, it is expected that DNA repair proteins would be evolutionarily conserved, exhibiting very minimal sequence change over time. However, BRCA1, an essential gene involved in DNA repair, has been reported to be evolving rapidly despite the fact that many protein-altering mutations within this gene convey a significantly elevated risk for breast and ovarian cancers.
Results
To obtain a deeper understanding of the evolutionary trajectory of BRCA1, we analyzed complete BRCA1 gene sequences from 23 primate species. We show that specific amino acid sites have experienced repeated selection for amino acid replacement over primate evolution. This selection has been focused specifically on humans and our closest living relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). After examining BRCA1 polymorphisms in 7 bonobo, 44 chimpanzee, and 44 rhesus macaque (Macaca mulatta) individuals, we find considerable variation within each of these species and evidence for recent selection in chimpanzee populations. Finally, we also sequenced and analyzed BRCA2 from 24 primate species and find that this gene has also evolved under positive selection.
Conclusions
While mutations leading to truncated forms of BRCA1 are clearly linked to cancer phenotypes in humans, there is also an underlying selective pressure in favor of amino acid-altering substitutions in this gene. A hypothesis where viruses are the drivers of this natural selection is discussed.
ContributorsLou, Dianne I. (Author) / McBee, Ross M. (Author) / Le, Uyen Q. (Author) / Stone, Anne (Author) / Wilkerson, Gregory K. (Author) / Demogines, Ann M. (Author) / Sawyer, Sara L. (Author) / College of Liberal Arts and Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-07-11
130355-Thumbnail Image.png
Description
Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of

Background
The reproductive ground plan hypothesis of social evolution suggests that reproductive controls of a solitary ancestor have been co-opted during social evolution, facilitating the division of labor among social insect workers. Despite substantial empirical support, the generality of this hypothesis is not universally accepted. Thus, we investigated the prediction of particular genes with pleiotropic effects on ovarian traits and social behavior in worker honey bees as a stringent test of the reproductive ground plan hypothesis. We complemented these tests with a comprehensive genome scan for additional quantitative trait loci (QTL) to gain a better understanding of the genetic architecture of the ovary size of honey bee workers, a morphological trait that is significant for understanding social insect caste evolution and general insect biology.
Results
Back-crossing hybrid European x Africanized honey bee queens to the Africanized parent colony generated two study populations with extraordinarily large worker ovaries. Despite the transgressive ovary phenotypes, several previously mapped QTL for social foraging behavior demonstrated ovary size effects, confirming the prediction of pleiotropic genetic effects on reproductive traits and social behavior. One major QTL for ovary size was detected in each backcross, along with several smaller effects and two QTL for ovary asymmetry. One of the main ovary size QTL coincided with a major QTL for ovary activation, explaining 3/4 of the phenotypic variance, although no simple positive correlation between ovary size and activation was observed.
Conclusions
Our results provide strong support for the reproductive ground plan hypothesis of evolution in study populations that are independent of the genetic stocks that originally led to the formulation of this hypothesis. As predicted, worker ovary size is genetically linked to multiple correlated traits of the complex division of labor in worker honey bees, known as the pollen hoarding syndrome. The genetic architecture of worker ovary size presumably consists of a combination of trait-specific loci and general regulators that affect the whole behavioral syndrome and may even play a role in caste determination. Several promising candidate genes in the QTL intervals await further study to clarify their potential role in social insect evolution and the regulation of insect fertility in general.
ContributorsGraham, Allie M. (Author) / Munday, Michael D. (Author) / Kaftanoglu, Osman (Author) / Page, Robert (Author) / Amdam, Gro (Author) / Rueppell, Olav (Author) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor)
Created2011-04-13
130351-Thumbnail Image.png
Description

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which

Viral protein U (Vpu) is a type-III integral membrane protein encoded by Human Immunodeficiency Virus-1 (HIV- 1). It is expressed in infected host cells and plays several roles in viral progeny escape from infected cells, including down-regulation of CD4 receptors. But key structure/function questions remain regarding the mechanisms by which the Vpu protein contributes to HIV-1 pathogenesis. Here we describe expression of Vpu in bacteria, its purification and characterization. We report the successful expression of PelB-Vpu in Escherichia coli using the leader peptide pectate lyase B (PelB) from Erwinia carotovora. The protein was detergent extractable and could be isolated in a very pure form. We demonstrate that the PelB signal peptide successfully targets Vpu to the cell membranes and inserts it as a type I membrane protein. PelB-Vpu was biophysically characterized by circular dichroism and dynamic light scattering experiments and was shown to be an excellent candidate for elucidating structural models.

ContributorsDeb, Arpan (Author) / Johnson, William (Author) / Kline, Alexander (Author) / Scott, Boston (Author) / Meador, Lydia (Author) / Srinivas, Dustin (Author) / Martin Garcia, Jose Manuel (Author) / Dorner, Katerina (Author) / Borges, Chad (Author) / Misra, Rajeev (Author) / Hogue, Brenda (Author) / Fromme, Petra (Author) / Mor, Tsafrir (Author) / ASU Biodesign Center Immunotherapy, Vaccines and Virotherapy (Contributor) / College of Liberal Arts and Sciences (Contributor) / School of Life Sciences (Contributor) / Biodesign Institute (Contributor) / School of Molecular Sciences (Contributor) / Applied Structural Discovery (Contributor) / Personalized Diagnostics (Contributor)
Created2017-02-22
192734-Thumbnail Image.png
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
Description
Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research

Cell immunotherapies have revolutionized clinical oncology. While CAR T cell therapy has been very effective in clinical studies, off-target immune toxicity limits eligible patients. Thus, NK cells have been approached with the same therapy design since NK cells have a more favorable safety profile. Therefore, the purpose of this research project is to explore DNA nanotech-based NK cell engagers (NKCEs) that force an immunological synapse between the NK cell and the cancer cell, leading to cancer death. DNA tetrabody (TB) and DNA tetrahedron (TDN) are fabricated and armed with HER2 affibody for tight adhesion to HER2+ cancer cell lines like SKBR3. Overall, relationship between TB-NK treatment and cancer cell apoptosis is still unclear. TB-NK treatment induces an apoptotic profile similar to PMA/IO stimulation. Pilot cell assay needs to be replicated with additional controls and a shortened treatment window. For DNA TDN fabrication, HER2 affibody polishing with Ni-NTA affinity chromatography achieves high purity with 20% to 100% high-imidazole elution gradient. ssDNA-HER2 affibody conjugation is optimal when ssDNA is treated with 40-fold excess sulfo-SMCC for 4 hours. In conclusion, the manufacturing of DNA-based NKCEs is rapid and streamlined, which gives these NKCEs the potential to become a ready to use immunotherapy.
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
Description
Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development. To better understand the effects of endogenous choline through the

Alzheimer’s disease (AD) is projected to increase, and understanding risk and protective factors could help mitigate this increase. Deficits in Choline, a B-like vitamin, intake or issues with endogenous choline production can lead to an increased risk for AD development. To better understand the effects of endogenous choline through the lifespan in the context of Alzheimer pathology, Male and Female 3xTg-AD and NonTg mice, were aged to 16.81 ± 0.13 months. Body weight, food consumption data, and blood plasma samples were collected across the lifespan. A behavioral battery, that consisted of Rotarod, Elevated Plus Maze, and Intellicage, was performed to assess differences across a range of tasks. Hippocampal and cortical tissue were collected to assess pathology. Overall, 3xTg-AD mice had lower choline levels than NonTg at multiple timepoints and Males had higher choline than Females. Furthermore, 3xTg-AD Females had higher levels of both Aβ and Tau pathology than their Male counterparts. In the Intellicage, Females made fewer Percent of Correct Responses during Place Preference. Together these findings show that choline levels through the lifespan, impact the severity of pathology between Males and Female 3xTg-AD mice and behavioral differences between the 3xTg-AD and NonTg mouse models.
ContributorsMistry, Faizan (Author) / Velazquez, Ramon (Thesis director) / Judd, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2024-05
192733-Thumbnail Image.png
ContributorsLuca, Michael (Author) / Yan, Hao (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Blattman, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
127959-Thumbnail Image.png
Description

This article assesses the combined influence of information integration and automated data analytics on project performance. To this end, retrospective data on 78 completed projects, with a total installed value of $8 billion, was collected. The data collection effort characterized, for each project, the level of internal and external information

This article assesses the combined influence of information integration and automated data analytics on project performance. To this end, retrospective data on 78 completed projects, with a total installed value of $8 billion, was collected. The data collection effort characterized, for each project, the level of internal and external information integration. Information integration was assessed as the seamlessly interoperable sharing of data produced from a work function with other functions/stakeholders so that no manual data transfer was required. Also, the level of automated data analytics, understood as the full automation of the data analysis function after input data are entered, was also characterized on a project basis. Then, non-parametric statistical techniques were used to assess the impact of such functions on cost and schedule performance. The statistical analysis was also stratified by project type, e.g. greenfield and brownfield, additions, and modifications or shutdowns. Overall, projects with a sophisticated degree of information integration and automated data analytics can control their projects with more reliable information and in a proactive manner so that informed decisions can be timely made on behalf of the project and the organization.

ContributorsAbbaszadegan, Amin (Author) / Grau, David (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-10-27
127931-Thumbnail Image.png
Description

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste

Construction waste management has become extremely important due to stricter disposal and landfill regulations, and a lesser number of available landfills. There are extensive works done on waste treatment and management of the construction industry. Concepts like deconstruction, recyclability, and Design for Disassembly (DfD) are examples of better construction waste management methods. Although some authors and organizations have published rich guides addressing the DfD's principles, there are only a few buildings already developed in this area. This study aims to find the challenges in the current practice of deconstruction activities and the gaps between its theory and implementation. Furthermore, it aims to provide insights about how DfD can create opportunities to turn these concepts into strategies that can be largely adopted by the construction industry stakeholders in the near future.

ContributorsRios, Fernanda (Author) / Chong, Oswald (Author) / Grau, David (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2015-09-14