Matching Items (744)
Filtering by

Clear all filters

150035-Thumbnail Image.png
Description
Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of

Concrete columns constitute the fundamental supports of buildings, bridges, and various other infrastructures, and their failure could lead to the collapse of the entire structure. As such, great effort goes into improving the fire resistance of such columns. In a time sensitive fire situation, a delay in the failure of critical load bearing structures can lead to an increase in time allowed for the evacuation of occupants, recovery of property, and access to the fire. Much work has been done in improving the structural performance of concrete including reducing column sizes and providing a safer structure. As a result, high-strength (HS) concrete has been developed to fulfill the needs of such improvements. HS concrete varies from normal-strength (NS) concrete in that it has a higher stiffness, lower permeability and larger durability. This, unfortunately, has resulted in poor performance under fire. The lower permeability allows for water vapor to build up causing HS concrete to suffer from explosive spalling under rapid heating. In addition, the coefficient of thermal expansion (CTE) of HS concrete is lower than that of NS concrete. In this study, the effects of introducing a region of crumb rubber concrete into a steel-reinforced concrete column were analyzed. The inclusion of crumb rubber concrete into a column will greatly increase the thermal resistivity of the overall column, leading to a reduction in core temperature as well as the rate at which the column is heated. Different cases were analyzed while varying the positioning of the crumb-rubber region to characterize the effect of position on the improvement of fire resistance. Computer simulated finite element analysis was used to calculate the temperature and strain distribution with time across the column's cross-sectional area with specific interest in the steel - concrete region. Of the several cases which were investigated, it was found that the improvement of time before failure ranged between 32 to 45 minutes.
ContributorsZiadeh, Bassam Mohammed (Author) / Phelan, Patrick (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2011
149676-Thumbnail Image.png
Description
Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have

Locomotion of microorganisms is commonly observed in nature. Although microorganism locomotion is commonly attributed to mechanical deformation of solid appendages, in 1956 Nobel Laureate Peter Mitchell proposed that an asymmetric ion flux on a bacterium's surface could generate electric fields that drive locomotion via self-electrophoresis. Recent advances in nanofabrication have enabled the engineering of synthetic analogues, bimetallic colloidal particles, that swim due to asymmetric ion flux originally proposed by Mitchell. Bimetallic colloidal particles swim through aqueous solutions by converting chemical fuel to fluid motion through asymmetric electrochemical reactions. This dissertation presents novel bimetallic motor fabrication strategies, motor functionality, and a study of the motor collective behavior in chemical concentration gradients. Brownian dynamics simulations and experiments show that the motors exhibit chemokinesis, a motile response to chemical gradients that results in net migration and concentration of particles. Chemokinesis is typically observed in living organisms and distinct from chemotaxis in that there is no particle directional sensing. The synthetic motor chemokinesis observed in this work is due to variation in the motor's velocity and effective diffusivity as a function of the fuel and salt concentration. Static concentration fields are generated in microfluidic devices fabricated with porous walls. The development of nanoscale particles that swim autonomously and collectively in chemical concentration gradients can be leveraged for a wide range of applications such as directed drug delivery, self-healing materials, and environmental remediation.
ContributorsWheat, Philip Matthew (Author) / Posner, Jonathan D (Thesis advisor) / Phelan, Patrick (Committee member) / Chen, Kangping (Committee member) / Buttry, Daniel (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150392-Thumbnail Image.png
Description
In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak

In this thesis the performance of a Hybrid AC System (HACS) is modeled and optimized. The HACS utilizes solar photovoltaic (PV) panels to help reduce the demand from the utility during peak hours. The system also includes an ice Thermal Energy Storage (TES) tank to accumulate cooling energy during off-peak hours. The AC runs continuously on grid power during off-peak hours to generate cooling for the house and to store thermal energy in the TES. During peak hours, the AC runs on the power supplied from the PV, and cools the house along with the energy stored in the TES. A higher initial cost is expected due to the additional components of the HACS (PV and TES), but a lower operational cost due to higher energy efficiency, energy storage and renewable energy utilization. A house cooled by the HACS will require a smaller size AC unit (about 48% less in the rated capacity), compared to a conventional AC system. To compare the cost effectiveness of the HACS with a regular AC system, time-of-use (TOU) utility rates are considered, as well as the cost of the system components and the annual maintenance. The model shows that the HACS pays back its initial cost of $28k in about 6 years with an 8% APR, and saves about $45k in total cost when compared to a regular AC system that cools the same house for the same period of 6 years.
ContributorsJubran, Sadiq (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2011
Description
As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of

As the demand for power increases in populated areas, so will the demand for water. Current power plant technology relies heavily on the Rankine cycle in coal, nuclear and solar thermal power systems which ultimately use condensers to cool the steam in the system. In dry climates, the amount of water to cool off the condenser can be extremely large. Current wet cooling technologies such as cooling towers lose water from evaporation. One alternative to prevent this would be to implement a radiative cooling system. More specifically, a system that utilizes the volumetric radiation emission from water to the night sky could be implemented. This thesis analyzes the validity of a radiative cooling system that uses direct radiant emission to cool water. A brief study on potential infrared transparent cover materials such as polyethylene (PE) and polyvinyl carbonate (PVC) was performed. Also, two different experiments to determine the cooling power from radiation were developed and run. The results showed a minimum cooling power of 33.7 W/m2 for a vacuum insulated glass system and 37.57 W/m2 for a tray system with a maximum of 98.61 Wm-2 at a point when conduction and convection heat fluxes were considered to be zero. The results also showed that PE proved to be the best cover material. The minimum numerical results compared well with other studies performed in the field using similar techniques and materials. The results show that a radiative cooling system for a power plant could be feasible given that the cover material selection is narrowed down, an ample amount of land is available and an economic analysis is performed proving it to be cost competitive with conventional systems.
ContributorsOvermann, William (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Taylor, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150339-Thumbnail Image.png
Description
A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air

A low cost expander, combustor device that takes compressed air, adds thermal energy and then expands the gas to drive an electrical generator is to be designed by modifying an existing reciprocating spark ignition engine. The engine used is the 6.5 hp Briggs and Stratton series 122600 engine. Compressed air that is stored in a tank at a particular pressure will be introduced during the compression stage of the engine cycle to reduce pump work. In the modified design the intake and exhaust valve timings are modified to achieve this process. The time required to fill the combustion chamber with compressed air to the storage pressure immediately before spark and the state of the air with respect to crank angle is modeled numerically using a crank step energy and mass balance model. The results are used to complete the engine cycle analysis based on air standard assumptions and air to fuel ratio of 15 for gasoline. It is found that at the baseline storage conditions (280 psi, 70OF) the modified engine does not meet the imposed constraints of staying below the maximum pressure of the unmodified engine. A new storage pressure of 235 psi is recommended. This only provides a 7.7% increase in thermal efficiency for the same work output. The modification of this engine for this low efficiency gain is not recommended.
ContributorsJoy, Lijin (Author) / Trimble, Steve (Thesis advisor) / Davidson, Joseph (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
Description

The purpose of this study is to create and establish an efficient and cost-effective solution to decrease the effects of sedentarism in pregnant women. Our team was given a propelling question, from which we had to narrow down our scope and conduct primary and secondary research to determine our ideal

The purpose of this study is to create and establish an efficient and cost-effective solution to decrease the effects of sedentarism in pregnant women. Our team was given a propelling question, from which we had to narrow down our scope and conduct primary and secondary research to determine our ideal customers. The design of our study intends to imitate the development of a startup where ideas are created from scratch and the final deliverable is a business model plan that shows some sort of traction. Our first major finding is that a sedentary lifestyle can be treated without major challenges in low risk pregnancies. We determined that uncertainty and lack of concise and clear information is one of the main causes of an increased level of sedentary behavior in low risk pregnancies. A significant driver for women to do some sort of activity or exercise stems from feeling supported, which doesn’t necessarily come from their partner or couple, but instead from other women that are going to a similar process as them. There are apps in the market that intend to serve pregnant women; however, there is not one that incorporates a social aspect to achieve their goal. In conclusion, there is opportunity in the market for a socially integrated pregnancy fitness app. The Gleam concept has been consciously developed to decrease sedentary behavior through concise, clear, and reliable information and by encouraging women through a socialization platform.

ContributorsMosier, Jacob Ryan (Co-author) / Flores, Valeria (Co-author) / McCreary, Liam (Co-author) / Byrne, Jared (Thesis director) / Hall, Rick (Committee member) / Silverstein, Taylor (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147834-Thumbnail Image.png
Description

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of the world’s most interesting coffee houses. Some of these cafes, such as the world-renowned Caffé Florian (opened in 1720) and Caffé Greco (1760), are built on long-standing traditions. Others are led by innovators championing high-quality boutique shops, challenging mass production chains such as Starbucks and Tim Hortons. These newer cafes fuel a movement classified as the “Third Wave”. With a foundation gained from specialized courses with Patrick O’Malley, North America’s leading voice in coffee, Zane and Charles conducted first-hand research into the unique coffee preferences of multiple cultures, the emergence and impact of the Third Wave in these countries, and what the future may hold for coffee lovers.

ContributorsFerguson, Charles William (Co-author) / Jarecke, Zane (Co-author) / Eaton, John (Thesis director) / Bonfiglio, Thomas (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147835-Thumbnail Image.png
Description

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of

From exploring coffee plantations with an old Irishman in the mountains of Colombia to watching the sun set over the Strait of Gibraltar from the terrace of an ancient Moroccan cafe, this thesis sent Charles and Zane on an elaborate cafe-crawl across ten countries, with stops at a few of the world’s most interesting coffee houses. Some of these cafes, such as the world-renowned Caffé Florian (opened in 1720) and Caffé Greco (1760), are built on long-standing traditions. Others are led by innovators championing high-quality boutique shops, challenging mass production chains such as Starbucks and Tim Hortons. These newer cafes fuel a movement classified as the “Third Wave”. With a foundation gained from specialized courses with Patrick O’Malley, North America’s leading voice in coffee, Zane and Charles conducted first-hand research into the unique coffee preferences of multiple cultures, the emergence and impact of the Third Wave in these countries, and what the future may hold for coffee lovers.

ContributorsJarecke, Zane Micheal (Co-author) / Ferguson, Charles (Co-author) / Eaton, John (Thesis director) / Bonfiglio, Thomas (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147845-Thumbnail Image.png
Description

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences

In this thesis I will explore deficits in Theory of Mind (ToM) in autistic people due to new evidence that they do not completely lack a ToM. A new theory is proposed, claiming that autistic people use a Hyper Theory of Mind (HyperToM) which has some application and processing differences from typical ToM. The HyperToM test will be administered as an online questionnaire that includes a self-reported Autism Quotient (AQ) section. The study is done in low support needs autistic (LSA) adults, which should have a developed ToM due to age and ability. Results showed some correlations with the AQ symptoms and HyperToM, but not enough diagnosed autistic people (9) participated in this study for significant results.

ContributorsMarkov, Vlada A (Author) / Fabricius, William (Thesis director) / Philips, Ben (Committee member) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147859-Thumbnail Image.png
Description

This thesis research aims to define, identify, and promote community theatre as a “third space” for disadvantaged youth. A third space is defined by the Oxford dictionary as “...the in-between, or hybrid, spaces, where the first and second spaces work together to generate a new third space. First and second

This thesis research aims to define, identify, and promote community theatre as a “third space” for disadvantaged youth. A third space is defined by the Oxford dictionary as “...the in-between, or hybrid, spaces, where the first and second spaces work together to generate a new third space. First and second spaces are two different, and possibly conflicting, spatial groupings where people interact physically and socially: such as home (everyday knowledge) and school (academic knowledge)” (Oxford Dictionary, 2021). For disadvantaged youth, the creation of a third space in the theatre can give them a safe environment away from issues they may have at home or at school, it can further their learning about themselves and others, and it can also help those youth feel a sense of belonging to a community larger than themselves. Because of these benefits, it is clear that performing arts programs can offer a great impact on disadvantaged youth; however, many theatre companies struggle to market their programming to said communities. This may be in part, due to low marketing budgets, no specificity in labor resources dedicated to youth programming, or ineffective marketing strategies and tactics. This research aims to provide tangible recommendations for youth programmers to better involve their target audience.

ContributorsFeuerstein, Kaleigh Nicole (Co-author) / Narducci, Emily (Co-author) / Gray, Nancy (Thesis director) / Woodson, Stephani (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05