Matching Items (3)
Description

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate,

Hemcrete is an alternative, environmentally‐friendly building material gaining adherents in Great Britain and other European countries. It is an attractive choice as a building material because it is made from a renewable resource, hemp, a hardy plant that is a close, but non‐hallucinogenic relative of marijuana. This plant is relatively easy to cultivate, requires little in the way of pesticides or fertilizers, and almost all parts can be used for various products from paper to textiles to food.

Hemcrete is made from a mixture of lime, water, and the fibrous outer portion of the hemp plant called the “hurd” or “shive”. When mixed, it is worked and placed much like conventional concrete ‐ hence the name. However, that is where the similarities with concrete end. Hemcrete is not comparable to concrete on a strength basis, and is better described as an alternative insulation product. When built into walls of sufficient thickness, Hemcrete offers high thermal efficiency, and has strong claims to being carbon negative. The purpose of this study
was to evaluate this claim of carbon negativity, and to compare these environmentally friendly qualities against conventional fiberglass batt insulation.

Our model was constructed using two identically sized “walls” measuring eight feet square by one foot in depth, one insulated using Hemcrete, and the other using fiberglass. Our study focused on three areas: water usage, cost, and carbon dioxide emissions. We chose water
usage because we wanted to determine the feasibility of using Hemcrete in the Phoenix metropolitan region where water is a troubled resource. Secondly, we wished to evaluate the claim on carbon negativity, so CO2 equivalents throughout the production process were measured. Finally, we wished to know whether Hemcrete could compete on a cost basis with more conventional insulation methods, so we also built in a price comparison.

Since the cultivation of hemp is currently unlawful in the United States, this study can help determine whether these restrictions should be relaxed in order to allow the construction of buildings insulated with Hemcrete.

Created2013-05
157945-Thumbnail Image.png
Description
Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the

Moderate physical activity, such as walking and biking, positively affects physical and mental health. Outdoor thermal comfort is an important prerequisite for incentivizing an active lifestyle. Thus, extreme heat poses significant challenges for people who are outdoors by choice or necessity. The type and qualities of built infrastructure determine the intensity and duration of individual exposure to heat. As cities globally are shifting priorities towards non-motorized and public transit travel, more residents are expected to experience the city on their feet. Thus, physical conditions as well as psychological perception of the environment that affect thermal comfort will become paramount. Phoenix, Arizona, is used as a case study to examine the effectiveness of current public transit and street infrastructure to reduce heat exposure and affect the thermal comfort of walkers and public transit users.

The City of Phoenix has committed to public transit improvements in the Transportation 2050 plan and has recently adopted a Complete Streets Policy. Proposed changes include mobility improvements and creating a safe and comfortable environment for non-motorized road participants. To understand what kind of improvements would benefit thermal comfort the most, it is necessary to understand heat exposure at finer spatial scales, explore whether current bus shelter designs are adequate in mitigating heat-health effects, and comprehensively assess the impact of design on physical, psychological and behavioral aspects of thermal comfort. A study conducted at bus stops in one Phoenix neighborhood examined grey and green infrastructure types preferred for cooling and found relationships between perception of pleasantness and thermal sensation votes. Walking interviews conducted in another neighborhood event examined the applicability of a framework for walking behavior under the stress of heat, and how differences between the streets affected perceptions of the walkers. The interviews revealed that many of the structural themes from the framework of walking behavior were applicable, however, participants assessed the majority of the elements in their walk from a heat mitigation perspective. Finally, guiding questions for walkability in hot and arid climates were developed based on the literature review and results from the empirical studies. This dissertation contributes to filling the gap between walkability and outdoor thermal comfort, and presents methodology and findings that can be useful to address walkability and outdoor thermal comfort in the world’s hot cities as well as those in temperate climates that may face similar climate challenges in the future as the planet warms.
ContributorsDzyuban, Yuliya (Author) / Redman, Charles L. (Thesis advisor) / Coseo, Paul J. (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019
Description

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate

Phoenix is the sixth most populated city in the United States and the 12th largest metropolitan area by population, with about 4.4 million people. As the region continues to grow, the demand for housing and jobs within the metropolitan area is projected to rise under uncertain climate conditions.

Undergraduate and graduate students from Engineering, Sustainability, and Urban Planning in ASU’s Urban Infrastructure Anatomy and Sustainable Development course evaluated the water, energy, and infrastructure changes that result from smart growth in Phoenix, Arizona. The Maricopa Association of Government's Sustainable Transportation and Land Use Integration Study identified a market for 485,000 residential dwelling units in the urban core. Household water and energy use changes, changes in infrastructure needs, and financial and economic savings are assessed along with associated energy use and greenhouse gas emissions.

The course project has produced data on sustainable development in Phoenix and the findings will be made available through ASU’s Urban Sustainability Lab.

ContributorsNahlik, Matthew (Author) / Chester, Mikhail Vin (Author) / Andrade, Luis (Author) / Archer, Melissa (Author) / Barnes, Elizabeth (Author) / Beguelin, Maria (Author) / Bonilla, Luis (Author) / Bubenheim, Stephanie (Author) / Burillo, Daniel (Author) / Cano, Alex (Author) / Guiley, Keith (Author) / Hamad, Moayyad (Author) / Heck, John (Author) / Helble, Parker (Author) / Hsu, Will (Author) / Jensen, Tate (Author) / Kannappan, Babu (Author) / Kirtley, Kelley (Author) / LaGrou, Nick (Author) / Loeber, Jessica (Author) / Mann, Chelsea (Author) / Monk, Shawn (Author) / Paniagua, Jaime (Author) / Prasad, Saransh (Author) / Stafford, Nicholas (Author) / Unger, Scott (Author) / Volo, Tom (Author) / Watson, Mathew (Author) / Woodruff, Abbie (Author) / Arizona State University. School of Sustainable Engineering and the Built Environment (Contributor) / Arizona State University. Center for Earth Systems Engineering and Management (Contributor)