Matching Items (9)
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
ContributorsHarris, Valerie (Performer) / ASU Library. Music Library (Publisher)
Created2021-09-24
171705-Thumbnail Image.png
Description
Cancer is a disease of multicellularity, with deep evolutionary origins. As such, the forces of both evolution and natural selection operate on multiple scales to govern tumor dynamics. As multicellular organisms increase in complexity, cellular-level fitness must be controlled in order to maintain organismal-level fitness. Mutations that might provide a

Cancer is a disease of multicellularity, with deep evolutionary origins. As such, the forces of both evolution and natural selection operate on multiple scales to govern tumor dynamics. As multicellular organisms increase in complexity, cellular-level fitness must be controlled in order to maintain organismal-level fitness. Mutations that might provide a benefit at the cellular level by allowing for rapid proliferation are subject to the same forces that function on the organismal level, wherein cancer suppression is a benefit – especially as organisms increase their body size and lifespan. In order to maintain these large cellular bodies and long lifespans, organisms must increase their means of cancer suppression, and it is likely that these two phenomena co-evolved together. On a smaller scale, the cooperative dynamics of circulating tumor cell (CTC) clusters engage in cooperation to form networks of connected single cells that provide protection, stability, and cooperative sharing of resources to enhance their survival as they detach from a primary tumor and metastasize at secondary sites. This work seeks to explore the phenomenon of multi-level selection in neoplastic disease by examining A) the mechanisms of cancer suppression at multiple scales, B) the ecological resilience and stability of cooperating cellular clusters and C) a large-scale dataset on cancer prevalence across mammals, sauropsids (birds and reptiles), and amphibians, illuminating the evolutionary life history characteristics that explain the tradeoffs between cancer suppression and overall organism fitness. By taking an ecological and evolutionary approach to understanding cancer, novel strategies of cancer treatment may be discovered alongside fundamental discoveries about the fundamental forces of selection that govern evolutionary dynamics from the cellular to the organismal scale.
ContributorsHarris, Valerie (Author) / Maley, Carlo C. (Thesis advisor) / Aktipis, Athena (Committee member) / Boddy, Amy M. (Committee member) / Compton, Carolyn (Committee member) / Arizona State University (Publisher)
Created2022
168579-Thumbnail Image.png
Description
Organ culture of the late nineteenth century played an important role in the development of cities on the American Western Frontier. By 1869, the transcontinental railroad connected cities across the United States, enabling coast-to-coast travel and spawning a new tourist industry. Rail travelers stopping in Utah frequently visited the Tabernacle

Organ culture of the late nineteenth century played an important role in the development of cities on the American Western Frontier. By 1869, the transcontinental railroad connected cities across the United States, enabling coast-to-coast travel and spawning a new tourist industry. Rail travelers stopping in Utah frequently visited the Tabernacle and were impressed by the organ, requesting to hear it played. The Salt Lake Tabernacle free daily organ recital program was initiated to meet that demand. This came at a critical time in the growth of the city as it sought to develop a positive image of itself. These organ recitals became a highlight of travelers’ journeys across the United States, shaping the image of Utah as a place of culture and refinement. Although free daily organ recital programs sprang up across the country during the early twentieth century, very few persisted for more than a decade. Today, the only two remaining continuous free daily organ recital series are given on the Salt Lake Tabernacle organ and on the Wanamaker organ in Philadelphia. Location, promotion, purpose, and programming were key factors vital to the early and continued success of the program. At a time when attendance is in decline for organ recitals, and indeed for all classical art music, the elements of this uniquely successful program may suggest new approaches for sharing organ music.
ContributorsHarris, Valerie (Author) / Marshall, Kimberly (Thesis advisor) / Saucier, Catherine (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2022
163900-Thumbnail Image.png
Description

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical Testing Laboratory, known simply as the ABCTL.

ContributorsCompton, Carolyn C. (Project director) / Christianson, Serena L. (Project director) / Floyd, Christopher (Project director) / Schneller, Eugene S (Research team head) / Rigoni, Adam (Research team head) / Stanford, Michael (Research team head) / Cheong, Pauline (Research team head) / McCarville, Daniel R. (Research team head) / Dudley, Sean (Research team head) / Blum, Nita (Research team head) / Magee, Mitch (Research team head) / Agee, Claire (Research team member) / Cosgrove, Samuel (Research team member) / English, Corinne (Research team member) / Mattson, Kyle (Research team member) / Qian, Michael (Research team member) / Espinoza, Hale Anna (Research team member) / Filipek, Marina (Research team member) / Jenkins, Landon James (Research team member) / Ross, Nathaniel (Research team member) / Salvatierra, Madeline (Research team member) / Serrano, Osvin (Research team member) / Wakefield, Alex (Research team member) / Calo, Van Dexter (Research team member) / Nofi, Matthew (Research team member) / Raymond, Courtney (Research team member) / Barwey, Ishna (Research team member) / Bruner, Ashley (Research team member) / Hymer, William (Research team member) / Krell, Abby Elizabeth (Research team member) / Lewis, Gabriel (Research team member) / Myers, Jack (Research team member) / Ramesh, Frankincense (Research team member) / Reagan, Sage (Research team member) / Kandan, Mani (Research team member) / Knox, Garrett (Research team member) / Leung, Michael (Research team member) / Schmit, Jacob (Research team member) / Woo, Sabrina (Research team member) / Anderson, Laura (Research team member) / Breshears, Scott (Research team member) / Majhail, Kajol (Research team member) / Ruan, Ellen (Research team member) / Smetanick, Jennifer (Research team member) / Bardfeld, Sierra (Research team member) / Cura, Joriel (Research team member) / Dholaria, Nikhil (Research team member) / Foote, Hannah (Research team member) / Liu, Tara (Research team member) / Raymond, Julia (Research team member) / Varghese, Mahima (Research team member)
Created2021
163901-Thumbnail Image.jpg
Description

Under the direction of Dr. Carolyn Compton, a group of seven Barrett honors students have embarked on a truly unique team thesis project to create a documentary on the process of creating a COVID-19 testing laboratory. This documentary tells the story of the ASU Biodesign Clinical Testing Laboratory (ABCTL), the

Under the direction of Dr. Carolyn Compton, a group of seven Barrett honors students have embarked on a truly unique team thesis project to create a documentary on the process of creating a COVID-19 testing laboratory. This documentary tells the story of the ASU Biodesign Clinical Testing Laboratory (ABCTL), the first lab in the western United States to offer public saliva testing to identify the presence of COVID-19.

ContributorsCura, Joriel (Director, Photographer) / Foote, Hannah (Producer, Sound designer) / Raymond, Julia (Production personnel) / Bardfeld, Sierra (Narrator, Editor) / Dholaria, Nikhil (Writer of added commentary) / Liu, Tara (Writer of added commentary) / Varghese, Mahima (Writer of added commentary) / Compton, Carolyn C. (Interviewee, Project director) / Harris, Valerie (Interviewee) / LaBaer, Joshua (Interviewee) / Miceli, Joseph (Interviewee) / Nelson, Megan (Interviewee) / Ungaro, Brianna (Interviewee)
Created2021
153917-Thumbnail Image.png
Description
Microbial electrochemical cells (MXCs) offer an alternative to methane production in anaerobic water treatment and the recapture of energy in waste waters. MXCs use anode respiring bacteria (ARB) to oxidize organic compounds and generate electrical current. In both anaerobic digestion and MXCs, an anaerobic food web connects the

Microbial electrochemical cells (MXCs) offer an alternative to methane production in anaerobic water treatment and the recapture of energy in waste waters. MXCs use anode respiring bacteria (ARB) to oxidize organic compounds and generate electrical current. In both anaerobic digestion and MXCs, an anaerobic food web connects the metabolisms of different microorganisms, using hydrolysis, fermentation and either methanogenesis or anode respiration to break down organic compounds, convert them to acetate and hydrogen, and then convert those intermediates into either methane or current. In this dissertation, understanding and managing the interactions among fermenters, methanogens, and ARB were critical to making developments in MXCs. Deep sequencing technologies were used in order to identify key community members, understand their role in the community, and identify selective pressures that drove the structure of microbial communities. This work goes from developing ARB communities by finding and using the best partners to managing ARB communities with undesirable partners. First, the foundation of MXCs, namely the ARB they rely on, was expanded by identifying novel ARB, the genus Geoalkalibacter, and demonstrating the presence of ARB in 7 out of 13 different environmental samples. Second, a new microbial community which converted butyrate to electricity at ~70% Coulombic efficiency was assembled and demonstrated that mixed communities can be used to assemble efficient ARB communities. Third, varying the concentrations of sugars and ethanol fed to methanogenic communities showed how increasing ED concentration drove decreases in methane production and increases in both fatty acids and the propionate producing genera Bacteroides and Clostridium. Finally, methanogenic batch cultures, fed glucose and sucrose, and exposed to 0.15 – 6 g N-NH4+ L-1 showed that increased NH4+ inhibited methane production, drove fatty acid and lactate production, and enriched Lactobacillales (up to 40% abundance) above 4 g N-NH4+ L-1. Further, 4 g N-NH4+ L-1 improved Coulombic efficiencies in MXCs fed with glucose and sucrose, and showed that MXC communities, especially the biofilm, are more resilient to high NH4+ than comparable methanogenic communities. These developments offer new opportunities for MXC applications, guidance for efficient operation of MXCs, and insights into fermentative microbial communities.
ContributorsMiceli, Joseph (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce (Committee member) / Arizona State University (Publisher)
Created2015
128777-Thumbnail Image.png
Description

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our

Dehalococcoides mccartyi strains are of particular importance for bioremediation due to their unique capability of transforming perchloroethene (PCE) and trichloroethene (TCE) to non-toxic ethene, through the intermediates cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Despite the widespread environmental distribution of Dehalococcoides, biostimulation sometimes fails to promote dechlorination beyond cis-DCE. In our study, microcosms established with garden soil and mangrove sediment also stalled at cis-DCE, albeit Dehalococcoides mccartyi containing the reductive dehalogenase genes tceA, vcrA and bvcA were detected in the soil/sediment inocula. Reductive dechlorination was not promoted beyond cis-DCE, even after multiple biostimulation events with fermentable substrates and a lengthy incubation.

However, transfers from microcosms stalled at cis-DCE yielded dechlorination to ethene with subsequent enrichment cultures containing up to 109 Dehalococcoides mccartyi cells mL-1. Proteobacterial classes which dominated the soil/sediment communities became undetectable in the enrichments, and methanogenic activity drastically decreased after the transfers. We hypothesized that biostimulation of Dehalococcoides in the cis-DCE-stalled microcosms was impeded by other microbes present at higher abundances than Dehalococcoides and utilizing terminal electron acceptors from the soil/sediment, hence, outcompeting Dehalococcoides for H2. In support of this hypothesis, we show that garden soil and mangrove sediment microcosms bioaugmented with their respective cultures containing Dehalococcoides in high abundance were able to compete for H2 for reductive dechlorination from one biostimulation event and produced ethene with no obvious stall. Overall, our results provide an alternate explanation to consolidate conflicting observations on the ubiquity of Dehalococcoides mccartyi and occasional stalling of dechlorination at cis-DCE; thus, bringing a new perspective to better assess biological potential of different environments and to understand microbial interactions governing bioremediation.

ContributorsDelgado, Anca (Author) / Kang, Dae-Wook (Author) / Nelson, Katherine (Author) / Fajardo-Williams, Devyn (Author) / Miceli, Joseph (Author) / Done, Hansa (Author) / Popat, Sudeep (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2014-06-20
ContributorsRoberts, Rees (Performer) / Mealey, Natalie (Performer) / Taylor, Karen (Performer) / Harris, Valerie (Performer) / Oftedahl, Paul (Performer) / Tucker, Julia (Performer) / Marshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2020-02-09