Matching Items (22)
137189-Thumbnail Image.png
Description
Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation

Urban areas produce an urban heat island (UHI), which is manifest as warmer temperatures compared to the surrounding and less developed areas. While it is understood that UHI's are warmer than their surrounding areas, attributing the amount of heat added by the urban area is not easily determined. Current generation modeling systems require diurnal anthropogenic heating profiles. Development of diurnal cycle profiles of anthropogenic heating will help the modeling community as there is currently no database for anthropogenic heating profiles for cities across the United States. With more accurate anthropogenic heating profiles, climate models will be better able to show how humans directly impact the urban climate. This research attempts to create anthropogenic heating profiles for 61 cities in the United States. The method used climate, electricity, natural gas, and transportation data to develop anthropogenic heating profiles for each state. To develop anthropogenic heating profiles, profiles are developed for buildings, transportation, and human metabolism using the most recently available data. Since utilities are reluctant to release data, the building energy profile is developed using statewide electricity by creating a linear regression between the climate and electricity usage. A similar method is used to determine the contribution of natural gas consumption. These profiles are developed for each month of the year, so annual changes in anthropogenic heating can be seen. These profiles can then be put into climate models to enable more accurate urban climate modeling.
ContributorsMilne, Jeffrey (Author) / Georgescu, Matei (Thesis director) / Sailor, David (Committee member) / Brazel, Anthony (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2014-05
141386-Thumbnail Image.png
Description

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying

The urban thermal environment varies not only from its rural surroundings but also within the urban area due to intra-urban differences in land-use and surface characteristics. Understanding the causes of this intra-urban variability is a first step in improving urban planning and development. Toward this end, a method for quantifying causes of spatial variability in the urban heat island has been developed. This paper presents the method as applied to a specific test case of Portland, Oregon. Vehicle temperature traverses were used to determine spatial differences in summertime ~2 m air temperature across the metropolitan area in the afternoon. A tree-structured regression model was used to quantify the land-use and surface characteristics that have the greatest influence on daytime UHI intensity. The most important urban characteristic separating warmer from cooler regions of the Portland metropolitan area was canopy cover. Roadway area density was also an important determinant of local UHI magnitudes. Specifically, the air above major arterial roads was found to be warmer on weekdays than weekends, possibly due to increased anthropogenic activity from the vehicle sector on weekdays. In general, warmer regions of the city were associated with industrial and commercial land-use. The downtown core, whilst warmer than the rural surroundings, was not the warmest part of the Portland metropolitan area. This is thought to be due in large part to local shading effects in the urban canyons.

ContributorsHart, Melissa A. (Author) / Sailor, David (Author)
Created2008-05-07
Description
In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation

In Greater Phoenix, urban heat is impacting health, safety, and the economy and these impacts are expected to worsen over time. The number of days above 110˚F are projected to more than double by 2060. In May 2017, The Nature Conservancy, Maricopa County Department of Public Health, Central Arizona Conservation Alliance, Urban Resilience to Extremes Sustainability Research Network, Arizona State University’s Urban Climate Research Center, and Center for Whole Communities launched a participatory Heat Action Planning process to identify both mitigation and adaptation strategies to reduce heat directly and improve the ability of residents to deal with heat. Community-based organizations with existing relationships in three neighborhoods selected for Heat Action Planning later joined the project team: Phoenix Revitalization Corporation, RAILMesa, and Puente Movement. Beyond building a community Heat Action Plan and completing demonstration projects, this participatory process was designed to develop awareness, agency, and social cohesion in underrepresented communities. Furthermore, the Heat Action Planning process was designed to serve as a model for future heat resilience efforts and create a local, contextual, and culturally appropriate vision of a safer, healthier future. The iterative planning and engagement method used by the project team strengthened relationships within and between neighborhoods, community-based organizations, decision-makers, and the core team, and it combined storytelling wisdom and scientific evidence to better understand current and future challenges residents face during extreme heat events.
As a result of three workshops within each community, the residents brought forth ideas that they want to see implemented to increase their thermal comfort and safety during extreme heat days. As depicted below, residents’ ideas intersected around similar concepts, but specific solutions varied across neighborhoods. For example, all neighborhoods would like to add shade to their pedestrian corridors but preferences for the location of shade improvements differed. Some neighborhoods prioritized routes to public transportation, others prioritized routes used by children on their way to school, and others wanted to see shaded rest stops in key places. Four overarching strategic themes emerged across all three neighborhoods: advocate and educate; improve comfort/ability to cope; improve safety; build capacity. These themes signal that there are serious heat safety challenges in residents’ day-to-day lives and that community, business, and decision-making sectors need to address those challenges.
Heat Action Plan elements are designed to be incorporated into other efforts to alleviate heat, to create climate-resilient cities, and to provide public health and safety. Heat Action Plan implementation partners are identified drawing from the Greater Phoenix region, and recommendations are given for supporting the transformation to a cooler city.
To scale this approach, project team members recommend a) continued engagement with and investments into these neighborhoods to implement change signaled by residents as vital, b) repeating the heat action planning process with community leaders in other neighborhoods, and c) working with cities, urban planners, and other stakeholders to institutionalize this process, supporting policies, and the use of proposed metrics for creating cooler communities.
ContributorsNature Conservancy (U.S.) (Contributor)
Created2019
141418-Thumbnail Image.png
Description

Presentation by David Sailor, professor in the School of Geographical Sciences and Urban Planning and director of the Urban Climate Research Center at ASU. Sailer's presentation addresses how to define urban heat islands (UHI), and decisions about why and how to measure these complex ecosystems.

ContributorsSailor, David (Author)
Created2017-09-07
147519-Thumbnail Image.png
Description

Ozone is a highly reactive compound that is harmful at very low concentrations as compared to other pollutants. One method of pollution control is the use of photocatalysis, specifically with titanium dioxide to induce ozone decomposition. An experiment was designed and executed in order to determine the rate of decomposition

Ozone is a highly reactive compound that is harmful at very low concentrations as compared to other pollutants. One method of pollution control is the use of photocatalysis, specifically with titanium dioxide to induce ozone decomposition. An experiment was designed and executed in order to determine the rate of decomposition by coating concrete in 5% by weight titanium dioxide mixed with paint. The experiment was unsuccessful in inducing decomposition but gave important insight into the adsorptive properties of ozone over surfaces, particularly with bare concrete that had an adsorption of 22.51 ± 2.457 ppbv, which was much better than the coated samples. Further studies into the development of photocatalytic paint is needed in order to develop an effective urban ozone pollution control method to be implemented in major cities, particularly in the most polluted such as Los Angeles, California.

ContributorsMedina, Taylor (Author) / Andino, Jean (Thesis director) / Sailor, David (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132900-Thumbnail Image.png
Description
Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on

Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on top of a high-albedo rooftop. This study quantitively investigates these impacts from PV installation on top of a building with a white roof in Phoenix, AZ. We supplemented our measurements with EnergyPlus simulations to model the energy implications for archetypical residential and retail buildings and calculated the energy penalty to generation ratio as well as sensible heat flux for each combination of panel height and building type. Results indicate that the daily cooling energy penalty to due blockage of outgoing longwave radiation can be 4.9—11.2% of the PV generation. In addition, while we observed a small decrease in nighttime sensible heat flux to the ambient, PV cases increased the daytime heat flux by more than a factor of 10. This study highlights the potential unintended consequences of rooftop PV under certain conditions and provides a broader perspective for building designers and urban planners.
ContributorsBrown, Kyle (Author) / Sailor, David (Thesis director) / Phelan, Patrick (Committee member) / Department of Physics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
160731-Thumbnail Image.png
Description

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods

The City of Phoenix Street Transportation Department partnered with the Rob and Melani Walton Sustainability Solutions Service at Arizona State University (ASU) and researchers from various ASU schools to evaluate the effectiveness, performance, and community perception of the new pavement coating. The data collection and analysis occurred across multiple neighborhoods and at varying times across days and/or months over the course of one year (July 15, 2020–July 14, 2021), allowing the team to study the impacts of the surface treatment under various weather conditions.

Created2021-09
187989-Thumbnail Image.png
Description

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces

Major urban centers are warming due to a combination of global and local phenomena. City governments are increasingly adopting strategies to mitigate the causes and impacts of extreme heat on their populations. Among these strategies are high solar-reflectance (cool) surfaces installed on building roofs and walls. Use of cool surfaces is a cost-effective and simple strategy that replaces conventional darker surfaces with surfaces that have a high reflectance to shortwave (solar) energy.

This report reviews the recent history of cool-surface deployment efforts. This includes peer-reviewed literature, conference proceedings, and grey literature to identify challenges and barriers to wide-scale deployment of cool surfaces. We have also researched heat action plans and programs from cities and different codes and standards, as well as available incentive and rebate programs.

The review identifies challenges, barriers, and opportunities associated with large-scale deployment of cool surfaces and categorizes them broadly as being related to product development & performance or policies & mandates. It provides a foundation upon which we intend to build a roadmap for rapidly accelerating future deployments of cool surfaces. This roadmap will address identified challenges and incorporate lessons learned from historical efforts to generate a practical and actionable plan.

ContributorsAlhazmi, Mansour (Author) / Sailor, David (Author) / Levinson, Ronnen (Author)
Created2023-05-24
172014-Thumbnail Image.png
Description
A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from

A well-insulated dark conventional rooftop can be hotter than any other urban surface, including pavements. Since rooftops cover around 20 – 25% of most urban areas, their role in the urban heat island effect is significant. In general, buildings exchange heat with the surroundings in three ways: heat release from the cooling/heating system, air exchange associated with exfiltration and relief air, and heat transfer between the building envelope and surroundings. Several recent studies show that the building envelope generates more heat release into the environment than any other building component.Current advancements in material science have enabled the development of materials and coatings with very high solar reflectance and thermal emissivity, and that can alter their radiative properties based on surface temperature. This dissertation is an effort to quantify the impact of recent developments in such technologies on urban air. The current study addresses three specific unresolved topics: 1) the relative importance of rooftop solar reflectance and thermal emissivity, 2) the role of rooftop radiative properties in different climates, and 3) the impact of temperature-adaptive exterior materials/coatings on building energy savings and urban cooling. The findings from this study show that the use of rooftop materials with solar reflectance above 0.9 maintain the surface temperature below ambient air temperature most of the time, even when the materials have conventional thermal emissivity (0.9). This research has demonstrated that for hot cities, rooftops with high solar reflectance and thermal emittance maximize building energy savings and always cool the surrounding air. For moderate climate regions, high solar reflectance and low thermal emittance result in the greatest building energy cost savings. This combination of radiative properties cools the air during the daytime and warms it at night. Finally, this research found that temperature-adaptive materials could play a significant role in reducing utility costs for poorly insulated buildings, but that they heat the surrounding air in the winter, irrespective of the rooftop insulation. Through the detailed analysis of building façade radiative properties, this dissertation offers climate-specific design guidance that can be used to simultaneously optimize energy costs while minimizing adverse warming of the surrounding environment.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Sailor, David (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Yeom, Dongwoo Jason (Committee member) / Arizona State University (Publisher)
Created2022
187618-Thumbnail Image.png
Description

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment, particularly for heat release.The first paper in this dissertation (Chapter

Cities are experiencing rapid warming due to the urban heat island (UHI) effect, which causes the city center to have higher air temperatures than the surrounding rural areas. This dissertation studies the effects of building design on the surrounding environment, particularly for heat release.The first paper in this dissertation (Chapter 2) quantifies the anthropogenic heat emissions from buildings and focuses on an archetype office building, the study is considering four U.S. cities with different climates. The results demonstrate that the building envelope is the main contributor to heat emission from a building, accounting for over 60% of the total heat emission in all cities for four-story buildings. Additionally, the study finds that substituting bare terrain with a constructed building increases sensed heat by more than 70% in all cities and building heights. The second paper (Chapter 3) of this dissertation identifies the key design variables that affect heat emissions and energy consumption in buildings. The study considers 15 U.S. cities that represents all 15 climate zones as defined by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 10 design variables known for their impacts on energy consumption were identified via a literature review and used in the analysis. The results show that the window-to-wall ratio (WWR) consistently has a strong correlation with energy consumption in all climate zones. Roof and wall solar reflectance variables showed a very strong correlation with heat emissions from a building. The final paper of this dissertation (Chapter 4) presents the results of a survey distributed to experts in the architectural field, to evaluate the importance of different design variables that are related to heat emission and energy consumption. The survey also assessed the importance of considering heat emission as a design criterion during the design process when compared to energy consumption. These survey results provide new insights into how heat emission can be incorporated into the early design process. The dissertation then highlights the difference found via the survey results from the expert with the simulation results to identify the key design variable that relates to both heat emission and energy consumption.

ContributorsAlhazmi, Mansour (Author) / Yeom, Dongwoo (Thesis advisor) / Sailor, David (Committee member) / Sanguinetti, Paola (Committee member) / Arizona State University (Publisher)
Created2023